
1.00 Spring 2005 1/4 Problem Set 4

Introduction to Computers and Engineering Problem Solving

Spring 2005

Problem Set 4: Lake Ecology

Due: 12 noon, Session 16

1. Problem statement

Lakes in North America and other temperate zones are often thermally stratified in
summer: there is warm, less dense water near the surface and cold, denser water near the
bottom, with a sharp delineation between the two layers. The upper layer is called the
epilimnion; the lower layer is the hypolimnion; and the boundary between them is the
thermocline. There is very little mixing between the layers, so decomposition of organic
matter at the bottom of a lake can cause severe depletion of oxygen in the hypolimnion,
affecting plant and animal life strongly in that layer.

In the figure below, the thermocline occurs at a depth of approximately 10 to 12 meters,
where the temperature decreases rapidly from about 20° C to 10° C.

0

5

10

15

20

25

0 5 10 15 20 25 30 35

Depth

T
em

p
er

at
u

re

ThermoclineEpilimnion Hypolimnion

The thermocline is the point at which the absolute value of the first derivative (dT/dz)
is greatest, or where the second derivative (d2T/dz2) is zero. It is difficult to estimate
the exact depth z; we will define the thermocline to be a range of z values in which
there is a rapid change in temperature. In the example above, the thermocline would
be at z= 10 m to z=12 m.

1.00 Spring 2005 2/4 Problem Set 4

2. Problem objective and approach

You have data on water temperature and dissolved oxygen for a set of four lakes, as
shown at the end of this problem set. You must represent this data for each lake as an
array of Observation objects. You thus need an Observation class.

The Observation class is very simple: it just contains the depth, temperature and oxygen
concentration. You may make the Observation class data members public for simplicity.
(It is better to make them private and to use get() and set() methods, but we simplify this
to save effort.) The Observation class has no methods, other than a constructor.

Each lake has an Observation array, name, area and depth, represented as member data in
the Lake class.

You must be able to find the following properties for each lake. You must write three
member methods in the Lake class to return:

1. Thermocline: upper and lower z values that define it, and the temperature
difference. Your method must return a triplet of values, as an ArrayList. Use
simple logic as in the example above to determine the thermocline depth. You
may assume there is a clear thermocline; you don’t need to handle cases where
there is none or it’s ambiguous. Assume there is only one observation at each
depth. The thermocline may extend over more than a pair of observations, though.

2. Average oxygen concentration above and below the thermocline. Ignore oxygen
concentration readings in the thermocline. Your method must return a pair of
values as an array. This method must find the thermocline first; don’t assume the
Thermocline method was run already.

3. Whether oxygen concentration in the hypolimnion is lower than the minimum
allowable concentration. This method returns a boolean. Don’t assume the
Thermocline method was run. (This method is easy; just call the method above
and check against the minimum allowable concentration.)

You must also write two static methods in the Lake class. This is perhaps not the natural
way to implement this, but we want you to learn how these methods are written and used.

1. Minimum temperature. This must be a static method.
2. Maximum temperature. This must be a static method.

These methods will need arguments.

The Lake class must also have two static data members:

1. Number of lakes. Your constructor(s) must manage this member.
2. Minimum allowable average oxygen concentration in a layer: a constant, 5 mg/L.

Last, the Lake class must have get() methods for the name, area, depth and a static get()
method for the number of lakes.

You must also write a LakeTest class that:

1.00 Spring 2005 3/4 Problem Set 4

1. Creates the four lakes and all their member data. No user input is required; all the
data can be ‘hardwired’ in the program. The Lake objects must be placed in an
ArrayList. (See MIT server for a code fragment that creates the Observation data.)

2. For each lake:
a. Invokes the get() methods and prints out the lake name, area and depth.
b. Invokes all five computational methods on each lake and writes out their

return values. You will have to unpack the return values to print them
when they are in an array or ArrayList.

3. Outputs the static data member, number of lakes.

3. Problem data

The data for your four lakes is given below. Temperature is °C; oxygen concentration is
in mg/L. Treat all data values as doubles.

Lake Nepessing Ortonville Lake
Depth Temperature Oxygen Depth Temperature Oxygen

0 23 15 0 26 11
1 23 14 1 25 11
2 23 14 2 24 11
3 22 14 4 24 10
8 20 14 5 23 11
9 20 15 8 20 10

10 19 14 9 17 9
12 12 7 11 17 9
18 11 7 13 17 10
23 10 7
29 10 6

Lake Hadley Fish Lake
Depth Temperature Oxygen Depth Temperature Oxygen

0 24 12 0 23 8
2 24 12 3 24 8
4 23 13 5 22 7
6 20 10 8 15 4
8 21 11 10 16 3

10 17 9 13 15 3
12 13 5 15 14 2
14 13 4
16 12 4
18 12 4
20 12 3

The area and depth of each lake is:
Name Area (km^2) Depth (m)
Nepessing 2.3 35
Hadley 1.7 24
Ortonville 1.3 15

1.00 Spring 2005 4/4 Problem Set 4

Name Area (km^2) Depth (m)
Fish 1.1 19

We have placed the temperature and oxygen concentration data on the MIT server.
You can cut and paste from the data into your program to save some typing effort

Turn In

1. Place a comment with your full name, MIT server username, section, TA name and

assignment number at the beginning of all .java files in your solution.

2. Place all of the files in your solution in a single zip file.

a. Do not turn in electronic or printed copies of compiled byte code (.class
files) or backup source code (.java~ files)

b. Do not turn in printed copies of your solution.

3. Submit this single zip file.

4. Your solution is due at noon. Your uploaded files should have a timestamp of no later
than noon on the due date.

Penalties

• 30% off if you turn in your problem set after Friday noon but before noon on the

following Monday. You have one no-penalty late submission per term for a turn-
in after Friday noon and before Monday noon.

• No credit if you turn in your problem set after noon on the following Monday.

