
1.00 Spring 2003 Final Exam 1/17 5/12/2005

1.00 Introduction to Computers and Engineering Problem
Solving

Final Exam May 21, 2003

Question Points

Question 1 / 5

Question 2 / 10

Question 3 / 20

Question 4 / 10

Question 5 / 10

Question 6 / 25

Question 7 / 20

Total / 100

Name:

Email Address:

TA:

Section:

You have three hours to complete this exam. For coding
questions, you do not need to include comments, and you should
assume that all necessary files have already been imported.
Final exam is open book, open notes. No laptops, calculators,
cell phones or other electronics are allowed. Sharing of notes or
books is not allowed.

1.00 Spring 2003 Final Exam 2/17 5/12/2005

Problem 1. Exceptions (5 points)
Which of the following statements is true given the program ExceptionTest? (Circle only
one answer.)

a. The program will not compile.

b. The program will compile. If we run it, it will throw an exception before
outputting any results.

c. The program will compile. If we run it, it will output some results, but then throw
an exception.

d. The program will compile and run without throwing any exceptions.

public class ExceptionTest {

 public static void main(String args[]) {

 String[] greek = {"Alpha", "Beta", "Gamma"} ;

 System.out.println(greek[1]);

 System.out.println(greek[3]);

 }

}

1.00 Spring 2003 Final Exam 3/17 5/12/2005

Problem 2. Abstract Classes & Inheritance (10 points)
Enraged by the high price of software, you decide to martyr yourself by writing a free
Java version of Photoshop for the world, which you call “jimp”. You’d like for the user
to be able to scale, and rotate shapes such as rectangles, triangles, circles, and squares.
You decide to create an abstract Shape class to represent the commonalities these shapes
will share in your program.

// Shape.java
1 public abstract class Shape
2 {
3 // x,y coordinates of upper left corner of Shape 's bounding box
4 private int xCoord;
5 private int yCoord;
6 private final String type; // rectangle, circle, triangle, etc
7
8 public Shape(int x, int y, String t)
9 {
10 xCoord=x;
11 yCoord=y;
12 type=t;
13 }
14
15 // get methods omitted
16 public abstract void scale(double factor);
17 public final void move(int newX, int newY)
18 {
19 xCoord=newX;
20 yCoord=newY;
21 }
22
23 public String toString(){
24 return "SHAPE:"+type+",("+xCoord+","+yCoord+")";
25 }
26 }

You then define a Rotatable interface and a Rectangle class as follows.
The Rectangle class contains a main() method for unit testing.

1 // Rotatable.java
2 public interface Rotatable{
3 public void rotate(double theta);
4 }

1 // Rectangle.java
2 public class Rectangle extends Shape implements R otatable
3 {
4 private int width;
5 private int height;
6

1.00 Spring 2003 Final Exam 4/17 5/12/2005

7 // The type of a Rectangle is "rectangle".
8 public Rectangle(int x, int y, int w, int h)
9 {
10 // Part A.
11 }
12
13 public String toString(){
14 return super.toString() + "," + width + "," + height;
15 }
16 public void move(int newX, int newY){super.move (newX, newY);}
17 public void scale(double factor){...} // implem entation omitted
18 public void rotate(double theta){...} // implem entation omitted
19
20 public static void main(String[] args)
21 {
22 Rotatable r1=new Rectangle(25,25,5,5);
23 Shape r2=new Rectangle(50,50,12,12);
24 Rectangle r3=new Shape(75,75,"rectangle");
25 Shape r4=new Shape(100,100,"rectangle");
26
27 r2.rotate(45);
28
29 System.out.println(r1);
30 System.out.println(r2);
31
32 System.exit(0);
33 }
34 }

A. Complete the constructor for the Rectangle class. (Type should be “rectangle”.)

B. Answer the following by circling “T” for true, or “F” fo false.

(i) Line 16 of Rectangle.java will cause a compilation error. T F

(ii) Line 22 of Rectangle.java will cause a compilation error. T F

(iii) Line 23 of Rectangle.java will cause a compilation error. T F

(iv) Line 24 of Rectangle.java will cause a compilation error. T F

(v) Line 25 of Rectangle.java will cause a compilation error. T F

(vi) Line 27 of Rectangle.java will cause a compilation error. T F

(vii) Line 29 of Rectangle.java will cause a compilation error. T F

(viii) Line 30 of Rectangle.java will cause a compilation error. T F

1.00 Spring 2003 Final Exam 5/17 5/12/2005

Problem 3. Binary Search Tree Insertion (5 points)

In a binary search tree (with no duplicate values), the data values of all descendants to the
left of any node are less than the data value stored in that node, and all descendants to the
right have greater data values. Here is a binary search tree that contains a single integer at
each tree node.

Starting with an empty tree (don’t use the one above), diagram the resulting binary
search tree if we added nodes with the following keys in this order:

51, 11, 77, 20, -4, 30, 12, 19

10

7 12

2

Your diagram must follow the simple convention of the tree above.

1.00 Spring 2003 Final Exam 6/17 5/12/2005

Problem 4. Binary Search Tree Fun (25 points)

The class defined below, DoubleTree , is a binary search tree that can only contain
double s.

public class DoubleTree {

int size = 0;
Node root = null;

 public DoubleTree() {
}

public void add(double d) {
if (root == null) {

root = new Node(d);
size++;

}
else {

if (root.add(d)) {
 size++;
}

}
}

 public double treeTotal() {
 if (root != null) return root.total();
 else return 0;
}

private static class Node {

double value;
Node left = null;
Node right = null;
Node(double d) {

value = d;
}
public boolean add(double d) {

if (d > value) {
if (right == null) {

right = new Node(d);
return true;

}
else {

return right.add(d);
}

}
else if (d < value) {

1.00 Spring 2003 Final Exam 7/17 5/12/2005

if (left == null) {
left = new Node(d);
return true;

}
else {

return left.add(d);
}

}
return false;

}
public double total() { /* part A */ }

} // End Node
} // End DoubleTree

You must implement several methods below of the Node and DoubleTree classes.

a) Implement an instance method in the Node class that will return the sum of all
the double values contained in the sub-tree rooted at this node.

 public double total() { /* this is a Node method */

 }

b) Implement an instance method in the DoubleTree class that will return the

average of all the doubles in the tree. This method must throw a
NoSuchElementException if it is invoked on an empty DoubleTree .

public double average() { // this is a DoubleTree method

}

1.00 Spring 2003 Final Exam 8/17 5/12/2005

c) Implement an instance method in the DoubleTree class that returns the smallest
double in the tree. This method must throw a NoSuchElementException if
it is invoked on an empty DoubleTree . (Do not create any additional methods or
data members in your solution.)

public double min() { /* this is a DoubleTree method */

}

1.00 Spring 2003 Final Exam 9/17 5/12/2005

Problem 5. More Exceptions (10 points)
Consider the following code:
public class TryException {
 public static void main(String[] args) {
 int value;
 int [] anArray = {5, 6, 7};
 try {
 int index = Integer.parseInt(
 JOptionPane.showInputDialog("Index: ")) ;
 value = anArray[index];
 System.out.println("Value is "+value);
 }
 catch (IndexOutOfBoundsException e) {
 System.out.println("Wrong index! Input 0 , 1, or 2");
 }
 System.out.println("DONE.");
 System.exit(0);
 }
}

Answer the following questions by circling YES or NO and filling in the blank.

(a) If the user inputs “2”, is an exception thrown? YES NO

If the program outputs any result, what will it be? Write your answer in the box.

(b) If the user inputs “4”, is an exception thrown? YES NO

If the program outputs any result, what will it be? Write your answer in the box.

(c) If the user inputs “2.5”, is an exception thrown? YES NO

If the program outputs any result, what will it be? Write your answer in the box.

1.00 Spring 2003 Final Exam 10/17 5/12/2005

true E W

N

S

Problem 6. Inner Classes and Linked Lists (25 points)

In this problem we are working with a grid of lights, like those used as electronic signs.
Each element of the light is a “Bulb”; its value is true if the element is on, and false
if it is off. The picture above shows an example of the grid.

At the right is a picture of one Bulb whose value is true . It has
references to the surrounding Bulb objects to the North, South,
East and West. If element is at the edge of the grid, then one or
more of these references may be null. You can assume that Bulb s
are connected together correctly in this problem, and that the grid
is rectangular. An example of a 3x3 grid is shown below.

The LightGrid and Bulb classes are given below.

public class LightGrid {

 class Bulb {
 boolean value;
 Bulb n, s, e, w; /* all null by default */
 Bulb(boolean v) { value = v; }
 }

 Bulb nwCorner; /* reference to the upper left B ulb */

 public LightGrid(int rowCount, int colCount)
 /* constructor body omitted */...
}

F F T

T F F

F F T

null null null

null null null

null

null

null

null

null

null

nwCorner

nwCorner

1.00 Spring 2003 Final Exam 11/17 5/12/2005

To reduce clutter, we have omitted the body to the LightGrid constructor, but you
should assume that this constructor exists and that it creates a LightGrid object with
the number of rows and columns passed in.

The LightGrid class has only one member variable, nwCorner , which is a reference
to the northwesternmost Bulb in the grid, as shown in the diagrams. You may not add
any additional member variables to either the LightGrid or the Bulb classes.

(a) Complete the getValue method for the LightGrid class. getValue should
return the value of the Bulb at row row and column col . The northwest Bulb is at row
0, column 0. You may not add, assume, or wish into existence any new member
variables or methods. Your method does not need to do error checking; assume that the
Bulb at row, col exists.

/* (a LightGrid method) */
public boolean getValue(int row, int col) {

}

1.00 Spring 2003 Final Exam 12/17 5/12/2005

 (b) Complete the percentOn method, which returns the percentage of Bulb objects
whose value is true . If all Bulbs are on, it should return 1.0. If all Bulbs are off, it
should return 0.0. You may not add, assume, or wish into existence any new member
variables or methods.

public double getPercentOn() { /*(a LightGrid method)*/

}

1.00 Spring 2003 Final Exam 13/17 5/12/2005

Problem 7. Priority Queues (20 points)
In this problem, you will use a sorted Vector to implement a “priority queue”. This
priority queue will only store objects of the Integer class in ascending order. In a
priority queue, elements with the highest priority (lower integer values) are stored at the
head of the queue. The priority queue always maintains the order of the elements
according to their priority levels. Just like a regular queue, all the elements are initially
added at the tail, and removed from the head. The IntegerPQ class assigns higher
priorities to smaller numbers, which means that it will always store Integer objects in
ascending order from the head to the tail. The diagram below shows how an Integer is
added to the priority queue.

You may find the following methods of Vector useful in your solution.

Head (index 0)

Tail (index size-1)

6

7

6

10

5

2

7

10

5

2

7

10

5

2 Head

Tail

Head

Tail

1. Priority queue
 before add

2. add(6)

3. Priority Queue

after add

Selected java.util.Vector methods

public void addElement(Object obj)
 Adds the specified element to the end of the Vector.

public void add(int index, Object obj)
 Adds the specified element at the specified position in the Vector.

public void removeElementAt(int index)
 Removes the element at the specified index from the Vector.

public Object remove(int index)
Removes and returns the element at the specified position.

public Object get(int index)
 Returns the element at the specified position in the Vector.

public void clear()
 Removes all of the elements from this Vector.

1.00 Spring 2003 Final Exam 14/17 5/12/2005

(a) Complete the add() method below.

(b) Complete the remove() method below.

(c) Complete the clear() method below.

(d) Complete the main() method as directed below to output the contents of the priority
queue.

(e) Write the output of the main() method in the space provided below.

public class IntegerPQ {
 // Vector used to store elements
 private Vector pq;

 public IntegerPQ() { pq = new Vector(); }

 // Part a. Add an Integer object to the priority queue.
 // You should assume that pq is sorted with hig hest
 // priority items (lowest values) at the beginn ing of
// the pq Vector. pq must also be sorted after add is
 // called. Important: The head of the queue is at pq[0].
 public void add(Integer i) {

 }

1.00 Spring 2003 Final Exam 15/17 5/12/2005

 // This method removes an element from Vector a nd
 // returns it
 public Integer remove() throws NoSuchElementException {

 // Part b
 // If queue is empty, throw a NoSuchElement Exception
 // Else, remove the element at the head and return it

 }
 public int size() { /* omitted */ }

 public boolean isEmpty() { /* omitted */ }

 public void clear() {

 // Part c
 // Complete the clear() method

 }

}

1.00 Spring 2003 Final Exam 16/17 5/12/2005

Now that IntegerPQ is complete, you will complete IntegerPQTest class, which
has a main() method, to test your implementation.

public class IntegerPQTest {

 public static void main(String[] args) {

 IntegerPQ priorityQ = new IntegerPQ();

 // Add integers
 priorityQ.add(new Integer(23));
 priorityQ.add(new Integer(71));
 priorityQ.add(new Integer(10));
 priorityQ.add(new Integer(89));
 priorityQ.add(new Integer(63));
 priorityQ.add(new Integer(41));
 priorityQ.add(new Integer(55));

 // remove elements
 priorityQ.remove();
 priorityQ.remove();

 // Add more integers
 priorityQ.add(new Integer(99));
 priorityQ.add(new Integer(22));
 priorityQ.add(new Integer(15));

 // Part d
 // Remove and print out all the Integer objects in
 // priorityQ. (Do not add any new methods.)

 System.exit(0) ;
 }
}

1.00 Spring 2003 Final Exam 17/17 5/12/2005

// Part e
// What is the output after executing the main meth od?

// End of test
// Thank you and enjoy the summer

