
1.00 Final 1/14 Fall 2004

1.00

Introduction to Computers and Engineering Problem Solving

Final / December 13, 2004

Name:

Email Address:

TA:

Section:

Question Points

Question 1 / 10

Question 2 / 15

Question 3 / 15

Question 4 / 10

Question 5 / 10

Question 6 / 25

Question 7 / 15

Total / 100

You have 180 minutes to complete this exam. For coding
questions, you do not need to include comments, and you should
assume that all necessary files have already been imported.

Good luck.

1.00 Final 2/14 Fall 2004

Question 1. True / False + Multiple Choice + Short Answer (10 Points)

1. Every node in a Binary Tree must have 2 children.

TRUE FALSE

2. A single stream can be used as both an input stream and an output stream.

TRUE FALSE

3. There can be several catch blocks in a single try/catch structure.

TRUE FALSE

4. A method can throw more than one class of Exception .

TRUE FALSE

5. The following Java source code will compile.

 public class FinalExam

{
 private int a;

 public static int printA()
 {
 System.out.println(“a = “ + a);
 }
 }

TRUE FALSE

6. An iterator of a HashMap visits its elements in the order they are inserted.

TRUE FALSE

7. Consider a HashTable that does not have any collisions. Suppose there are n items
to be stored and m slots in the HashTable . Searching for an element in the
HashTable is:

a. O(n)
b. O(1)
c. O(m)
d. O(log n)

1.00 Final 3/14 Fall 2004

8. Consider following Java method.

public static void findOrder(int n)
 {

int result = 0;
 for (int i = 0; i < n; i++)
 {
 for(int j = i; j < n; j++)

{
result++;

}
 }

}

The above code runs in:
a. O(n)
b. O(1)
c. O(n2)
d. O(log n)

9. Consider an instance of data structure illustrated below. It has an add() method to
add an element and remove() method to remove an element. The figure below shows
an example of this data structure (referred to as d) initially, after d.add(3) is called,
and after d.remove() is called.

Which type of data structure best describes this data structure?

STACK QUEUE

2 1

d.add(3)

3 2 1

d.remove()

3 2

1.00 Final 4/14 Fall 2004

10. Consider following Binary Search Tree.

a. What’s the First Key of this Binary Search Tree?

b. If node 11 was to be deleted from the tree, which node would be the successor

that replaces node 11?

18

11 25

7 16 19

12 17

32

33 27 8 4

1.00 Final 5/14 Fall 2004

Question 2. LinkedList (15 Points)

In this question, you are going to write a static method, findAverage() , which takes
an instance of Java Collections Framework LinkedList class that holds only
Integer objects and finds the average of contained int values. Here is the method
signature:

public static double findAverage(LinkedList list)

For instance, let’s suppose you have a LinkedList object that contains Integer(4) ,
Integer(6) , Integer(3) , Integer(2) , Integer(5) , and Integer(3) . The
findAverage() method should find the average of the contained six int values and
return it.

Complete the findAverage() method. Assume that only Integer objects are
contained in the LinkedList object. Your solution must use the ListIterator
object to traverse the instance of LinkedList .

public static double findAverage(LinkedList list)
{

 ListIterator iter = list.listIterator();

 // Your Code Here

}

1.00 Final 6/14 Fall 2004

Question 3. Stack (15 Points)

In this question, you are going to write a static method, removeInteger() , which
removes certain Integer object/objects from a stack. This method takes as arguments
an instance of IntegerStack , which represents the stack data structure for Integer
objects, and an Integer object that specifies the object you want to remove from the
stack. Here is the method signature:

public static void removeInteger(IntegerStack s, Integer i)

For instance, let’s suppose you have a variable IntegerStack s , which refers to the
instance of IntegerStack that contains several Integer objects, and you would like
to remove all the Integer objects that contain int value of 4.

As you can see from the diagram above, after invoking the removeInteger() method,
the instance of IntegerStack no longer contains any instances of the Integer(4)
object.

To complete the method, you need to use some of the following public methods of
IntegerStack class:

• public IntegerStack()
 // Constructor of IntegerStack class

• public void push(Integer i)
 // Pushes an Integer object to the stack

2

4

1

4

2

3

Original
Stack

2

1

2

3

Modified
Stack

remove Integer (s, new Int eger(4))

1.00 Final 7/14 Fall 2004

• public Integer pop() throws EmptyStackException

 // Pops the Integer object added last

• public int size()
 // Returns the size of the stack

• public boolean isEmpty()
 // Checks whether the stack is empty or not

Complete the removeInteger() method.

public static void removeInteger(IntegerStack s, In teger i)
{

}

1.00 Final 8/14 Fall 2004

Question 4. Stream (10 Points)

In Streams lecture, we discussed three types of data formats that you can use to read and
write information: text, binary data, and object. For a Java application that generates
output data and distributes that data over the Internet, which data format would you use?
Why?

1.00 Final 9/14 Fall 2004

Question 5. Tree (10 Points)

Consider the following tree.

Write the results from a Postfix (Post-Order), Prefix (Pre-Order), and Infix (In-Order)
traversal for the above tree. Note that the nodes of above tree hold either numerical
values or arithmetic operators, where the XXXX denotes a multiplication operation.

X

2 /

2 +

6 X

3 2

Postfix (Post-Order) traversal:

Prefix (Pre-Order) traversal:

Infix (In-Order) traversal:

1.00 Final 10/14 Fall 2004

Question 6. Streams (25 Points)

Read the following code carefully.

• The class StudentData stores the students’ name and exam grades for 1.00
students. Its toString() method returns a string of name and grades, each of
them separated by tab character.

• The class StreamExample takes input and output file names as arguments to

its constructor.
- Its parseFile() method opens the input file for reading. It reads a line of

information, calculates the average from student’s grades, and creates a
StudentData object from that with the average as the final data item. The
StudentData object is then stored in an ArrayList list .

- Its writeFile() method opens the output file for writing. It uses the
toString() method of StudentData to write information for each of
the objects in the list.

• The format of the input file is as shown in the example below:

Ana 80 70 60
David 99 89 98
Mary 89 40 60
Fedrick 79 49 78
Chris 78 67 56
Elena 59 98 78

• The format of the output file should be:

Ana 80.0 70.0 60.0 70.0
David 99.0 89.0 98.0 95.333
Mary 89.0 40.0 60.0 63.0
Fedrick 79.0 49.0 78.0 68.667
Chris 78.0 67.0 56.0 67.0
Elena 59.0 98.0 78.0 78.333

public class StudentData
{
 private String name;
 private double[] data;

 public StudentData(String n, double[] m)

{
 name = n;
 data = m;
 }

1.00 Final 11/14 Fall 2004

 public String toString()
{

 // See Part 1 below

 }
}

public class StreamExample
{
 String inFile, outFile;
 ArrayList list = new ArrayList();

 public StreamExample(String name1, String name2)

{
 inFile = name1;
 outFile = name2;
 }

 public void parseFile()

{

 // See Part 2 below

 }

 public void writeFile()

{

 // See Part 3 below

 }
}

Part 1) Complete the toString() method of StudentData such that it creates a
String object that has the format shown for the output file above.

public String toString()
{

}

String s = "";

return s;

1.00 Final 12/14 Fall 2004

Part 2) Complete the parseFile() method of StreamExample to read the input file.
The method should:

• Open the file for reading
• Read each line of data while more data exists
• Using the StringTokenizer , break each line into 4 tokens: name, grade1,

grade2, and grade3. Each student has exactly 3 grades.
• For each student ,

- calculate the average of his or her grades using grade1, grade2, and grade3
- store 3 grades and the average in a double array of 4 elements
- create an object of type StudentData using name, grades, and average
- add the object to the ArrayList list .

public void parseFile()
{

}

try
{
 FileReader fReader = new FileReader(inFile);
 BufferedReader reader = new BufferedReader(fReader);
 String temp = reader.readLine();

 while (temp != null)

{
 StringTokenizer tokenizer = new StringTokenizer(temp);

 String name = tokenizer.nextToken();

 // Your Code Here

 temp = reader.readLine();
 }
 reader.close();
}
catch (FileNotFoundException e) { /* Implementation hidden */ }
catch (IOException e) { /* Implementation hidden */ }

1.00 Final 13/14 Fall 2004

Part 3) Complete the writeFile() method of StreamExample to write the data
from the ArrayList list to the output file. The method should:

• Open the file for writing
• Loop over all the data in list to write each object data on a new line (refer to

the format of the output file shown above).

public void writeFile()
{

}

try
{

 FileWriter fWriter = new FileWriter(outFile);
 BufferedWriter writer = new BufferedWriter(fWriter);

 // Your Code Here

writer.close();

}
catch (IOException e) { /* Implementation hidden */ }
catch (Exception e) { /* Implementation hidden */ }

1.00 Final 14/14 Fall 2004

Question 7. Hashing (15 Points)

Part 1) A 1.00 TA wants to store the data related to students in his class in a hash table.
Assume all students in the class get a loaner laptop and each loaner laptop has a unique
serial number between 0 and 99. The TA wants to use the serial number of the loaner
laptop of a student as the key to hash. Suppose the hash table that he wants to use has 20
slots and the maximum enrollment in the class is restricted to 15. What is the maximum
load factor for the hash table?

Part 2) Suppose the TA decides to add the two digits comprising the key to find out the
slot in the hashing table to put the student into. Suppose there are 6 students in the class
with their loaner laptop serial numbers being 89, 82, 79, 34, 56, and 65. What slots are
allotted in the hash table? Is there a collision?

Part 3) If the serial numbers of a loaner laptop are equally likely to have any value
between 0 and 99, does this hashing scheme distribute the keys uniformly in slots?
Which slot is the least likely to face collision?

