
1.00 Lecture 13

Inheritance

Reading for next time: Big Java: sections 11.5-11.6

Inheritance

• Inheritance allows you to write new classes
based on existing (super) classes
– Inherit super class methods and data
– Add new methods and data

• This allows substantial reuse of Java code
–

invokes old code (libraries, etc.)
– We sometimes need to have old code invoke new code

(even code that wasn’t imagined when the old code was

• E.g. A drawing program must manage a new shape

– Inheritance allows us to do this!

When extending software, we often write new code that

written), without changing (or even having) the old code!

Access for inheritance

• Class may contain members (methods or data) of
type:
– Private:

• Access only by class’s methods

–
• Access by:

– Class’s methods
– Methods of inherited classes, called subclasses
–

– Package:
• Access by methods of classes in same package

– Public:
• Access to all classes everywhere

A Programming Project

• Department has system with Student class
– Has extensive data (name, ID, courses, year, …) for all

students that you need to use/display

– Dept wants to manage research projects better
• Undergrads and grads have very different roles

– Positions, credit/grading, pay, …

–

• Suppose Student was written 5 years ago by someone else
without any knowledge that it might be used to manage
research projects

Protected (rarely used in Java; it’s pretty unsafe)

Classes in same package [this is a problem in my view]

You want to reuse the Student class but need to add very
different data and methods by grad/undergrad

Classes and Objects

Student S1(“Jo”,“Wang”, 2);

...

name= S1.getName();

// Gets S1 name

...

}

Student

lastName
firstName

dept

Request(args)

Response(ret val)

printData

Encapsulation Message passing “Main event loop”

private:

Inheritance
Class Student

firstName
lastName

dept

printData

Class Undergrad

UnderWage
UnderHours

firstName
lastName

dept

Class Grad

gradSalary

firstName
lastName

dept

printData
getPay

is-a

printData
getPay

Already written:

is-a

You next write:

public … main(…){

Inheritance, p.2

Class Grad

gradSalary

firstName
lastName

dept

printData
getPay Class SpecGrad

firstName
lastName

dept

printData
getPay

gradSalary

specStipend

is-a

Exercise: Student class

• Write a Student class as a base class:
– Two private variables: first name, last name
– Constructor with two arguments
– Void method printData() to print the first + last name:

Exercise: Undergrad class

• Write an Undergrad class as a derived class:
– Class declaration extends Student
– Add private variables underWage and underHours
– Constructor: How many arguments does it

have?
• super(arguments)

• Sets the two new private variables

– Method getPay() returns
underHours

– Method printData() prints name and pay (void)
•

super.printData();

Exercise: Grad class

• Write a Grad class as a derived class:
– Class declaration ‘extends Student’
– Add private variable gradSalary
– Constructor: How many arguments does it

have?
• super(arguments)

• Sets the new private variable

– Method getPay() returns double gradSalary
– Method printData() prints name and pay (void)

• Use superclass printData()

Invokes superclass constructor:

double underWage *

Use superclass printData() method to print name:

Invokes superclass constructor:

method to print name

Exercise: Special Grad class

• Write a SpecialGrad class as a derived class
of Grad:
– Class declaration ‘extends _______’
– Add private variable specStipend
– Constructor: How many arguments does it

have?
• super(arguments)

• Sets the new private variable

– Method getPay() returns double specStipend
– Method printData() prints name and pay (void)

• Use superclass printData()

Exercise: main()

• Download class StudentTest
– It has only a main() method, which:

• Creates Undergrad Ferd at $12/hr for 8 hrs
•
• Creates Grad Ann at $1500/month
• Prints Ann’s data
• Creates at $2000/term
• Prints Mary’s data
• Creates an array of 3 Students
• Sets array elements to Ferd, Ann, Mary
• Loops through the array and uses PrintData() on each
Student object in the array to show their data.

–

Invokes superclass constructor:

method to print name

Prints Ferd’s data

SpecialGrad Mary

What happens in the loop? Did you expect it?

Solution: Main method

public static void main(String[] args) {

Ferd.printData();

Ann.printData();

Mary.printData();

System.out.println();

// Polymorphism, or late binding

Student[] team= new Student[3];

team[0]= Ferd;

team[1]= Ann;

team[2]= Mary;

team[i].printData();

}

}

Java knows the
object type and
chooses the
appropriate method
at run time

Output from main method

Weekly pay: $96.0

Ann Brown

Monthly salary: $1500.0

Mary Barrett

Monthly salary: $0.0

Semester stipend: $2000.0

Note that we could not write:

team[i].getPay();

because getPay() is not a method of the

public class StudentTest {

Undergrad Ferd= new Undergrad("Ferd", "Smith", 12.00, 8.0);

Grad Ann= new Grad("Ann", "Brown", 1500.00);

SpecGrad Mary= new SpecGrad("Mary", "Barrett", 2000.00);

for (int i=0; i < 3; i++)

Ferd Smith

superclass Student. In contrast, printData() is a method

of Student, so Java can find the appropriate version.

We’d have similar problems with a method like isUROP that

would only be defined for undergrads and not in Student

Optional exercise

• In class Grad:
– Change printData() to use getPay() instead of

explicitly printing gradSalary

– Save/compile and run StudentTest

– What happens?

– Why?

