
1.00 Lecture 16

Exceptions
Nested and Inner Classes

Reading for next time: Big Java: sections 4.1-4.10

Exceptions: Try, throw, catch

•	 Exceptions are how Java handles errors that the
method in which the error occurs can’t handle

•	 The Java exception mechanism has three elements:
–	 Throw (what a method does)

•	 Method detects error, cannot handle it
•	 Method throws an exception

–	 Try block (what the caller of the method does first)
•	 Method calls that may throw an exception are placed in a try

block (defined by curly braces) in the calling method
– Catch blocks follow try blocks (what caller does second)

•	 Each block contains an exception handler of a given type

1

Catching an exception
import javax.swing.*;

public class BadInput {

public static void main(String[] args) {

while (true) {

String answer = JOptionPane.showInputDialog("Enter an

integer (0 to quit)");

int intAnswer = -1;

try { // Try block

intAnswer = Integer.parseInt(answer); // Throw

} catch (NumberFormatException e) { // Catch block

JOptionPane.showMessageDialog(null, "Not an integer");

}

if (intAnswer == 0)

break;

}

System.exit(0);

}

}

Exercise
• Download BadInput from the Web site
• Comment out:

–	 Try block (‘try’ and the curly braces; leave intAnswer = …),
–	 Catch block (remove the entire block, including code)
–	 Save/compile

• Enter non-integer input. See what happens.
–	 What happens if the user types a non-integer, Cathy, for

example?
–	 Is this what we’ve been doing so far in 1.00 for input?

• Then remove the comments, restoring the try/catch blocks
–	 Save/compile
–	 Enter non-integer input.
–	 What happens?
–	 Is this better?

2

Throwing an Exception
public static double average(double[] dArray)

throws IllegalArgumentException {

if (dArray.length == 0)

throw new IllegalArgumentException();

// Exceptions are objects!

double sum = 0.0;

for (int i = 0; i < dArray.length; i++)

sum += dArray[i];

return sum / dArray.length;

}

Exercise

•	 Download class AverageTest, which has:
–	 The average() method from the previous slide
–	 A partially written main() method

•	 Creates nonzero-length array a
•	 Creates zero length array b as: double[] b= { };

•	 Complete the main() method in AverageTest that
calls the average() method:
–	 Call average() twice, with the zero-length and the

nonzero-length arrays
–	 Put the average() calls in a try block and catch the

exceptions
•	 Save/compile and run. What happens?

3

Exercise
public class AverageTest {

public static double average(double[] dArray)

throws IllegalArgumentException {

if (dArray.length == 0)

throw new IllegalArgumentException();

double sum = 0.0;

for (int i = 0; i < dArray.length; i++)

sum += dArray[i];

return sum / dArray.length;

}

public static void main(String[] args) {

double[] a = { 1.0, 3.0, 5.0 };

double[] b = {};

double avgA = Double.NaN, avgB = Double.NaN;

// Call average with a and b in try block

// Catch any exceptions thrown in catch block

System.out.println("avgA: " + avgA);

System.out.println("avgB: " + avgB);

} }

Writing Your Own Exception Classes

•	 Writing your own exception class is common.
•	 New exception classes allow you to handle a new

type of error separately.
•	 Exception classes extend Exception.

public class DataFormatException

extends Exception {

public DataFormatException()

{ super(); }

public DataFormatException(String s)

{ super(s); }

}

4

Exercise

•	 Write a ZeroException class that extends Exception
–	 Do it exactly as on the previous slide

Exercise, p.2

•	 Download the ExceptionTest class.
•	 Write a static quotient(int num, int denom) method

that finds num/denom but throws a ZeroException if
denom==0
–	 Use the constructor for ZeroException that takes a String

argument

import javax.swing.*;
public class ExceptionTest {

public static double quotient(int num, int denom)
// Complete the code.

// Remember method signature must state exception thrown

// In method body, throw exception when error state occurs

}

// main() method below

5

Exercise, p.3

•	 Complete the main() method, partially written for
you, to:

• Read two ints via JOptionPanes (done for you)
• Call quotient() in a try block and print the result
• Catch a ZeroException error
• In the catch block, use:

– System.out.println(e); // e is the ZeroException object
• Do this in a loop that reads ints til –1 is input (done for you)

Exercise, p.3
import javax.swing.*;

public class ExceptionTest {

public static void main(String[] args) {

int num1, num2;

double result;

while (true) {

String answer = JOptionPane.showInputDialog(

"Enter an integer");

num1 = Integer.parseInt(answer);

answer = JOptionPane.showInputDialog(

"Enter an integer");

num2 = Integer.parseInt(answer);

// Complete the try and catch block code here:

// Call quotient in try block, catch exception

if (num1== -1 || num2== -1)

break; }

System.exit(0);

}

}

6

Exceptions and Inheritance

•	 Since exceptions are instances of classes, exception
classes may use inheritance. A FileNotFoundException
is a derived class of IOException.

•	 When an error is detected, you should create and throw a
new instance of an appropriate type of exception.

•	 The first catch statement matching the exception class or
one of its superclasses is executed.
–	 The order of the catch blocks matters!

Exception Inheritance Example
try
{

FileReader in = new FileReader("MyFile.txt");
// Read file here

}

catch (FileNotFoundException e)

{

// Handle not finding the file (bad file name?)
}
catch (IOException e)
{

// Handle any other read error
}

// If we reversed these catch blocks, the program
// would not compile (unreachable code)

7

Exception Guidelines

•	 If you can do a simple if-else test for a condition, don’t use
an exception
–	 Exceptions are very slow

•	 Make try blocks large
–	 Some programmers put every statement in a separate try

block…it’s unreadable!
•	 Don’t ignore exceptions by using empty catch blocks…do

something
•	 Why do we need exceptions?

–	 Usually errors are caught in low-level routines: file reader,
math function that is very general-purpose and has no idea
whether the error is serious or not

–	 Caller, often several levels of call away, is the one who knows
the context of the error and can decide the best course of
action

Nested Classes
You can define a nested class inside another class:

public abstract class java.awt.geom.Line2D
{

public static class Double { ... }
public static class Float { ... }

}

// Note the static keyword; this defines a nested
// class, as opposed to inner classes, covered next

// Enclosing class (Line2D in this example) can be,
// and usually is, concrete, not abstract

8

Nested Classes, 2

•	 Nested class behaves like any other class except
that its name is the outer class name
concatenated with the inner class name: e.g.,
Line2D.Double

•	 A nested class is considered to be part of the
enclosing class:
–	 Make it public if you want methods in other classes to

use it
–	 Make it private if you are only going to use it in the

enclosing class
•	 The nested class has no access to the private

data (or methods) of the enclosing class, if any
•	 The enclosing class has full access to all data

and methods of the nested class, even if private

Nested Class Example
public class Train {

private int trainNbr;

private Car[] carList;

private static class Car { // Nested class

private int carNbr; // Train can access all of it

private String carType;

private Car(int c, String ct) { carNbr = c; carType = ct;}

private int whatTrain() {return trainNbr; } // Won't compile

}

public Train(int tn, Car[] cl) {

trainNbr = tn; carList = cl;

}

public static void main(String[] args) {

Car c1 = new Car(5940, "sleeper");

Car c2 = new Car(5930, "sleeper");

Car[] cars = { c1, c2 };

Train t = new Train(59, cars);

System.out.println(t.carList[0].carNbr + "\n" +

t.carList[1].carNbr); // Private car member

}

}

9

Inner Classes

•	 If a nested class is not static, we call it an inner
class.

•	 Inner class methods have access to the instance
variables and methods of the enclosing class
instance.
–	 This is the key difference from nested classes

•	 Why do this?
–	 I really don’t know. C++ doesn’t have inner or nested

classes. They can be very obscure, so perhaps they’re
best avoided.

–	 However, they are convenient in Swing; we’ll use them
next class as ActionListeners

–	 They are regarded by some as a good construct for
hiding classes within enclosing classes that are their
only user, to prevent any other class from using them

•	 However, inner classes can be hacked.

Exercise

•	 Trains, again
–	 We have a train with two cars

•	 The train has a number and a voltage at which its power is
supplied

•	 Each car has a car number and a voltage at which its
power operates

–	 We want to know for each car:
•	 Whether the voltage is compatible
•	 Its car number, which is the concatenation of the train

number and car number
– E.g train 59, car 30, yields a car number of 5930

–	 Download Train3
•	 We’ll complete the code in two steps, on the next slides

10

Train3 class
public class Train3 {

private int trainNbr;
private int trainVoltage; // 480 or 575 volt power
private Car carA, carB;

public Train3(int tn, int tv) {

trainNbr = tn;

trainVoltage= tv;

}
private void setCars(Car c1, Car c2) {

carA= c1;

carB= c2;

}

public String toString() {
return ("Train: " + trainNbr +

" power compatibility \n car:" +
carA.fullCarNbr() + " "+
carA.isPowerCompatible() + "\n car:" +
carB.fullCarNbr() + " "+
carB.isPowerCompatible());

}

Exercise: Train3 class, contd
// Class Car is INSIDE class Train: inner class

private class Car {
private int carNbr;
private String carType;
private int carVoltage; // 480 or 575 volt power
private Car(int c, String ct, int v) {

carNbr = c;

carType = ct;

carVoltage= v;

}
private String fullCarNbr() {

// Complete this code: train nbr and car nbr
return(" "); // Complete this

}
private boolean isPowerCompatible() {

// Complete this code: train, car voltage same?
return false; // Change this to output needed

}

}

11

Exercise: Train3 main()

public static void main(String[] args) {

// Complete main: 5 lines of code.

// 1. Create a new Train, whose number is 59 and voltage is 480.

// 2. Create a new car, number 40, type "sleeper", voltage 480.

// You need to use odd syntax here: Car c= t.new Car(...)
// where t is your train object, because Car is inner class

// 3. Create second car, number 30, type "sleeper", voltage 575.

// 4. Invoke setCars to let the Train know what cars it has.
// This is odd, but main() created the cars, and Train t
// doesn't know about them

// 5. Print out the Train t (its toString will do it for you).

}

// Save/compile and run it

12

