
1

1.00 Lecture 4

Data Types, Operators

Reading for next time: Big Java: sections 6.1-6.4 (still)

Promotion
Data Type Allowed Promotions
double None

float double

long float,double

int long,float,double

char int,long,float,double

short int,long,float,double

byte short,int,long,float,double in
cr

ea
si

ng
 c

ap
ac

ity

• Java does promotions silently, from lower capacity
types to higher capacity types in operations and assignment (=)

• When doing binary operations, Java promotes byte or short to int
• In all other cases it promotes the smaller to larger capacity

• Don’t mess around: just use int (long sometimes) and double

2

Casting

•	 To convert a data type to a lower capacity type,
you must cast it explicitly
long s= 1000*1000*1000;

int q= (int) s;

•	 The programmer is responsible for making sure
the variable fits in the lower capacity
representation.
–	 If it doesn’t, you get no warning, and there is garbage in

the variable (more next class on this topic)
•	 You can cast variables into higher capacity types,

if needed
–	 You already did this, casting ints to doubles

Exercise
•	 Create a new project (Lecture4)
–	 Write a class CastTest.
–	 In the main() method:

•	 Declare ints x1=17, x2=20 and x3=12
• Try to declare an int 2x= 34. What happens?
•	 Compute the average of x1, x2 and x3. Be careful.

•	 Declare a long big= 9876543210; (remember the L!)
•	 Try to set int x4 = big and print x4. What happens?
•	 Cast big to an int and see what happens.

If you have time:
•	 Declare a double small= 2.0;
•	 Try to set int s= small. What happens?
•	 Cast small to an int. Is this ok?

3

--

Arithmetic Operators
Table in precedence order, highest precedence at top

Operators Meaning Example Associativity
++ increment i= d++; x= --q; Right to left

decrement --z; y= (a--) + b;
+ (unary) unary + c= +d;
- (unary) unary – e= -f;
* multiplication a= b * c * d; Left to right
/ division e= f / g;
% modulo (int) h= i % j;
+
-

addition
subtraction

k= m + n + p;
q= s – t;

Left to right

Arithmetic exercise
•	 Create a class ArithmeticTest in Lecture4
•	 Write a main() method in class Arithmetic Test

–	 Set the number of 1.00 students to 196
–	 Increment this by one, then decrement by one

•	 (Easy come, easy go, before add or drop date)
–	 Set the number of 1.001 students to 20
–	 Find total students (1.00, 1.001), but increment the 1.001

students by one first, all in one line
–	 If we group students in threes, how many students are

left over?
–	 How many groups of three are there?
–	 Use the debugger to see your answers

•	 Don’t write any System.out.println statements

4

Precedence, Associativity

•	 Operator precedence is in the order of the
earlier table. Do exercises on paper:
– Operators in same row have equal precedence

int i=5; int j= 7; int k= 9; int m=11; int n;

n= i + j * k - m; // n= ?

•	 Associativity determines order in which
operators of equal precedence are applied

int i=5; int j= 7; int k= 9; int m=11; int n;

n= i + j * k / m - k; // n= ?

•	 Parentheses override order of precedence
int i=5; int j= 7; int k= 9; int m=11; int n;

n= (i + j) * (k – m)/k; // n= ?

Operator Exercises

•	 What is the value of int n:
–	 n= 1 + 2 - 11 / 3 * 5 % 4;

–	 n= 6 + 5 - 20 / 3 * 7 % 4;

–	 int i= 5; int j= 7; int k= 9;
–	 n= 6 + 5 - ++j / 3 * --i % k--;

–	 i= 5;
–	 n= i + ++i;

–	 // Don’t ever do any of these!

// n= ?

// n= ?

// n= ?

// n= ?

5

Integer Arithmetic Properties

•	 Overflows occur from:
–	 Division by zero, including 0/0 (undefined)

•	 Programmer has responsibility to check and prevent
this

•	 Java will warn you (by throwing an exception) if it can’t
do an integer arithmetic operation (discussed later)

–	 Accumulating results that exceed the capacity of
the integer type being used
•	 Programmer has responsibility to check and prevent, as

in zero divides
•	 No warning is given by Java in this case

Integer Arithmetic Exercise
public class IntArithmetic {

public static void main(String[] args) {

int cubicInch= 2000*1000*1000;

System.out.println(“cubicInch: " + cubicInch);

cubicInch += cubicInch; // Add more space

System.out.println(“cubicInch: " + cubicInch);

}

}

6

Integer Arithmetic Exercise
public class IntArithmetic {

public static void main(String[] args) {

int cubicInch= 2000*1000*1000;

System.out.println("cubicInch: " + cubicInch);

cubicInch += cubicInch; // Add more space

System.out.println("cubicInch: " + cubicInch);

}

}

It’s necessary to analyze the
// Output

range of your results, under
cubicInch: 2000000000

worst case circumstances. cubicInch: -294967296
You often use a long to hold
sums of ints, etc.

• Exercise: fix this method

Floating point exercise

•	 Write a program to solve the following:
–	 You have a 1 meter long bookshelf
–	 There are things that are 0.1m, 0.2m, 0.3m,

0.4m and 0.5m long
–	 Starting with the smallest thing, place each on

the bookshelf until you can’t place any more
–	 How many things can you put on the shelf?
–	 How much space is left over?

7

Floating Point Exercise
public class BookshelfTest {

public static void main(String[] args) {

double lengthLeft= 1.0;

int booksPlaced= 0;

// Your code here: things are 0.1, 0.2, 0.3, 0.4, 0.5m

// Loop while there is still enough space for next item

System.out.println(“Books placed: "+ booksPlaced);

System.out.println("Length left: "+ lengthLeft);

}

}

Floating point problem

• How do we fix this?
–	 Never use if (a == b) with floats or doubles
–	 Always use if (Math.abs(a – b) < TOLERANCE)

•	 Where TOLERANCE is about 10-6 float or 10-15
double

•	 Or a variation on this if the operator is not ==

• Correct the previous exercise

