
1

1.00 Lecture 7

Java Classes and Objects

Reading for next time: Big Java: sections 2.6-2.11

Classes

•	 A class is a pattern or template from which objects
are made
–	 You may have many birds in a simulation

• One bird class (or more if there’s more than one type of bird)
• Many bird objects (actual instances of birds)
• Simulation

•	 Objects are instances of classes
–	 Class: Student Object: Joe Smith
–	 Class: Building Object: Building 10
–	 Class: Street Object: Mass Ave

2

Class Definition
•	 Classes contain:

–	 Data (members, fields)
•	 Simple data types, like int or double (e.g. bird weight)
•	 Objects (e.g. bird beak)

–	 Methods (functions, procedures)
• Actions that an object can execute (e.g. bird flies/moves)

•	 Classes come from:
–	 Java class libraries: JOptionPane, Array, Math, etc. There

are several thousand classes (Javadoc)
–	 Class libraries from other sources: Web, fellow students…
–	 Classes that you write yourself

•	 Classes are usually the nouns in a problem
statement (e.g. bird)
–	 Data members are also nouns (e.g., weight)

•	 Methods are usually the verbs (e.g. flies)

Building Classes
•	 Classes hide their implementation details from the

user (programmer using the already-written class):
–	 Their data is not accessed directly, and the details are not

known to ‘outside’ objects or programs.
–	 Data is almost always private (keyword).

•	 Objects are used by calling their methods.
–	 The outside user knows what methods the object has, and

what results they return. Period. (Usually.)
•	 The details of how their methods are written are not known to

‘outsiders’
–	 Methods are usually public (keyword).

•	 By insulating the rest of the program from each object’s details,
it is much easier to build large programs correctly, and to reuse
objects from previous work.

•	 This is called encapsulation or information hiding.
•	 Access: public, private, (package, protected)

3

Using an Existing Class
public class BusRoute {

// Data members--private

private int rteNumber;

private int passengers;

private double pctTransfer;

// Constructor or existence method—public (no return type ever)

public BusRoute(int r, int p, double pct) {

rteNumber = r;

passengers = p;

pctTransfer = pct;

}

// ‘Get’ methods—respond to messages from other objects--public

public int getRteNumber() {return rteNumber;}

public int getPassengers() {return passengers;}

public double getPctTransfer() {return pctTransfer;}

public double getConnectionPassengers() {

return passengers * pctTransfer / 100.0;}

// ‘Set’ methods-respond to messages from other objects--public

public void setPassengers(int i) { passengers = i;}

public void setPctTransfer(double d) {pctTransfer = d;}

public void setRteNumber(int i) {rteNumber = i;}

} // ‘void’ means they don’t send a response, just do what’s asked

Using an Existing Class
public class BusTransfer {

public static void main(String[] args) {

// Create bus route objects

BusRoute bus1 = new BusRoute(1, 300, 80.0); // ‘new’ keyword

BusRoute bus2 = new BusRoute(47, 400, 30.0);

BusRoute bus3 = new BusRoute(70, 500, 50.0);

// Send messages to the routes asking for connecting psgrs

double psgr1= bus1.getConnectionPassengers();

double psgr2= bus2.getConnectionPassengers();

double psgr3= bus3.getConnectionPassengers();

// Print out the results

System.out.println("Route "+ bus1.getRteNumber()+ " "+ psgr1);

System.out.println("Route "+ bus2.getRteNumber()+ " "+ psgr2);

System.out.println("Route "+ bus3.getRteNumber()+ " "+ psgr3);

double totalPsgr= psgr1 + psgr2 + psgr3;

System.out.println("Total passengers: "+ totalPsgr);

}

}

4

Exercise, part 1

•	 Download BusRoute and BusTransfer
•	 In BusTransfer’s main method:

–	 Immediately after the three bus routes are created:
•	 Get the number of passengers from routes 1 and 47
•	 (You can just use the bus1 and bus2 objects directly; you

don’t have to figure out which routes are numbers 1 and 47)
•	 Set these routes’ passengers to be 100 more than the current

level

•	 Save, compile and read with the debugger to make
sure it’s working correctly

Exercise, part 2

•	 In BusRoute:
– Add a variable connectingTime to the BusRoute class

•	 Choose an appropriate data type for it
–	 Change the constructor

•	 Add a fourth parameter (call it c)
•	 Use c to set the value of connectingTime in the bus route
•	 (Make the parameter name different than the variable name)

–	 Add ‘set’ and ‘get’ methods for connectingTime
•	 Use the other ‘set’ and ‘get’ methods as a guide

•	 Save and compile BusRoute (not BusTransfer)
–	 Eclipse will give you 3 error message saying your new

constructor is undefined in BusTransfer. That’s ok for now.
–	 You can’t run BusRoute to test it yet

•	 You could write a main() method in BusRoute strictly as a test
method. This is called ‘unit test’ to check each class in
isolation.

5

Exercise, part 3

• In BusTransfer’s main method:
– Alter the ‘new’ statements to send another parameter

•	 Make the connectingTime 5 for rte 1, 10 for rte 47, 7 for rte 70
•	 Parameters must be sent in the order the constructor is

expecting them
–	 Get the connectingTime from route 70 and print it

•	 Do this right after the bus routes are created

• Save, compile and read it with the debugger

