
1

1.00 Lecture 25

Numerical Methods:
Root Finding

Reading for next time: Big Java: section 19.4

Root Finding
• Two cases:
– One dimensional function: f(x)= 0
– Systems of equations (F(X)= 0), where

• X and 0 are vectors and 
• F is an n-dimensional vector-valued function

• We address only the 1-D function
– In 1-D, it’s possible to bracket the root between 

bounding values
– In multidimensional case, it’s impossible to bound

• (Almost) all root finding methods are iterative
– Start from an initial guess
– Improve solution until convergence limit satisfied
– For smooth 1-D functions, convergence assured, 

but not otherwise



2

Root Finding Methods
• Elementary (pedagogical use only):

– Bisection
– Secant, false position (regula falsi)

• “Practical” (using the term advisedly):
– Brent’s algorithm (if derivative unknown)
– Newton-Raphson (if derivative known)
– Laguerre’s method (polynomials)
– Newton-Raphson (for n-dimensional problems)

• Only if a very good first guess can be supplied
• See “Numerical Recipes in C” for methods

– Library available on Athena. Can translate or link to Java
– The C code in the book is quite (needlessly) obscure

• Why is this so hard?
– The computer can’t “see” the functions. It only has 

function values at a few points. You’d find it hard to solve 
equations with this little information also!

Root Finding Preparation
• Before using root finding methods:

– Graph the equation(s): Matlab, etc.
• Are they continuous, smooth; how differentiable?

– Use Matlab, etc. to explore solutions
– Linearize the equations and use matrix methods to get 

approximate solutions
– Approximate the equations in other ways and solve 

analytically
– Bracket the ranges where roots are expected

• For fun, look at
– Plot it at 3.13, 3.14, 3.15, 3.16; f(x) is around 30
– Well behaved except at x= π
– Dips below 0 in interval x= π +/- 10-667

– This interval is less than precision of doubles!
• You’ll never find these two roots numerically

– This is in Pathological.java: experiment with it later

1])(ln[)/1(3)( 242 +−−= xxxf ππ



3

Bracketing

f(x)= x2 - 2

-8          -6          -4         -2           0           2           4           6           8

No zero in bracket (though we can’t be sure)
Move in direction of smaller f(x) value.
Empirical multiplier of 1.6 to expand bracket size

UL

Bracketing

f(x)= x2 - 2

-8          -6          -4         -2           0           2           4           6           8

UL

Still no zero in bracket (though we can’t be sure)
Move again in direction of smaller f(x) value.



4

Bracketing

f(x)= x2 - 2

-8          -6          -4         -2           0           2           4           6           8

UL

Done; found an interval containing a zero

“Function Passing” Again
// MathFunction is interface with one method

public interface MathFunction {

public double f(double x);

} 

// FuncA implements the interface

public class FuncA implements MathFunction {

public double f(double x) {

return x*x - 4;    

}

}



5

Bracketing Program
public class Bracket {

public static boolean zbrac(MathFunction func, double[] x){

// Java version of zbrac, p.352, Numerical Recipes

if (x[0] == x[1]) {

System.out.println("Bad initial range in zbrac");

return false;  }

double f0= func.f(x[0]);

double f1= func.f(x[1]);

for (int j= 0; j < NTRY; j++) {

if (f0*f1 < 0.0)

return true;

if (Math.abs(f0) < Math.abs(f1)) {

x[0] += FACTOR*(x[0]-x[1]);

f0= func.f(x[0]); }

else {

x[1] += FACTOR*(x[1]-x[0]);

f1= func.f(x[1]);    }  }

return false;

} // No guarantees that this method works!

Bracketing Program
// class Bracket continued

public static double FACTOR= 1.6;

public static int NTRY= 50;

public static void main(String[] args) {

double[] bound= {5.0, 6.0};     // Initial bracket guess

// (Use JOption prompt)

boolean intervalFound= zbrac(new FuncA(), bound);

System.out.println("Bracket found? " + intervalFound);

if (intervalFound)

System.out.println(“L:"+bound[0]+" U: "+bound[1]);

System.exit(0);        

}

}

// This program implements what the previous slide drawings show

// Numerical Recipes has 2nd bracketing program on p.352, which

// searches subintervals in bracket and records those w/zeros



6

Paper Exercise: Brackets
• Find intervals where the following 

functions have zeros or singularities:
– 3 sin(x)
– 0.1x2

– 1/x
– 5 sin(x) / x
– sin (1/x)

• Sketch these roughly
• We’ll explore these 5 functions with 

different root finding methods shortly

Bisection
• Bisection
– Interval passed as arguments to method must be 

known to contain at least one root
– Given that, bisection “always” succeeds

• If interval contains 2 or more roots, bisection finds one of 
them

• If interval contains no roots but straddles a singularity, 
bisection finds the singularity

– Robust, but converges slowly
– Tolerance should be near machine precision for 

double (about 10-15)
• When root is near 0, this is feasible
• When root is near, say, 1010 ,this is difficult

– Numerical Recipes, p.354 gives a usable method
• Checks that a root exists in bracket defined by arguments
• Checks if f(midpoint) == 0.0 (within some tolerance)
• Has limit on number of iterations, etc.



7

Bisection

f(x)= x2 - 2

-8          -6          -4         -2           0           2           4           6           8

x1 x2m

f(m)*f(x2) < 0, so root in [m, x2]. Set x1=m

f(x1)*f(m) > 0, so no root in [x1, m]

Assume/analyze only a single root in the interval (e.g., [-4.0, 0.0])

Bisection

f(x)= x2 - 2

-8          -6          -4         -2           0           2           4           6           8

x1 x2m

f(m)*f(x2) > 0, so no root in [m, x2]

f(x1)*f(m) < 0, so root in [x1, m].  Set x2= m

Continue until (x2-x1) is small enough



8

Bisection- Simple Version
public class BisectSimple {

public static double bisect(MathFunction func, double x1,

double x2, double epsilon) {

double m;

// Very rare case of double loop variables being ok

for (m= (x1+x2)/2.0; Math.abs(x1-x2) > epsilon;

m= (x1+x2)/2.0)

if  (func.f(x1)*func.f(m) <= 0.0)

x2= m;       // Use left subinterval

else

x1= m;       // Use right subinterval

return m;

}

public static void main(String[] args) {

double root= BisectSimple.bisect(new FuncA(), -8.0, 8.0, 0.0001);

System.out.println("Root: " + root);

}

}

Bisection- NumRec Version
public class RootFinder { // NumRec, p. 354

public static final int JMAX= 40; // Max no of bisections

public static final double ERR_VAL= -10E10;  

public static double rtbis(MathFunction func, double x1,

double x2, double xacc) {

double dx, xmid, rtb;

double f= func.f(x1);

double fmid= func.f(x2);

if (f*fmid >= 0.0) {

System.out.println("Root must be bracketed");

return ERR_VAL; }

if (f < 0.0) {      // Orient search so f>0 lies at x+dx

dx= x2 - x1;

rtb= x1; }

else {

dx= x1 - x2;

rtb= x2; }

// All this is ‘preprocessing’; loop on next page



9

Bisection- NumRec Version, p.2
for (int j=0; j < JMAX; j++) {

dx *= 0.5; // Cut interval in half

xmid= rtb + dx; // Find new x

fmid= func.f(xmid);

if (fmid <= 0.0) // If f still < 0, move

rtb= xmid; // left boundary to mid

if (Math.abs(dx) < xacc || fmid == 0.0)

return rtb;

}

System.out.println("Too many bisections");

return ERR_VAL;

}  

// Invoke with same main() but use RootFinder.rtbis()

// This is noticeably faster than the simple version,

// requiring fewer function evaluations.

// It’s also more robust, checking brackets, limiting

// iterations, and using a better termination criterion.

// Error handling should use exceptions (we don’t here)

Exercise: Bisection

• Download Roots
• Use the bisection application in Roots to explore 

its behavior with the 5 functions
– Choose different starting values (brackets) by clicking at 

two points along the x axis; red lines appear
– Then just click anywhere. Each time you click, bisection 

will divide the interval; a yellow line shows the middle
– When it thinks it has a root, the midline/dot turns green
– The app does not check whether there is a zero in the 

bracket, so you can see what goes wrong…
– Record your results; note interesting or odd behaviors



10

Secant, False Position Methods
• For smooth functions:

– Approximate function by straight line
– Estimate root at intersection of line with x axis

• Secant method:
– Uses most recent 2 points for next approximation line
– Faster than false position but doesn’t keep root bracketed and 

may diverge
• False position method:

– Uses most recent points that have opposite function values
• Brent’s method is better than either and should be the 

only one you really use:
– Combines bisection, root bracketing and quadratic rather than 

linear approximation
– See p. 360 of Numerical Recipes

Secant Method



11

False Position Method

Exercise
• Use secant method application in Roots to 

experiment with the 5 functions
– Choose different starting values by clicking at two 

points along the x axis; red and orange lines appear
– Then just click anywhere. When you click, a yellow 

secant line displays
– Click again, and the intersection of secant and x axis is 

found, and the right and left lines (red and orange lines) 
move

– When it thinks it has a root, the midline/dot turns green
– The app does not check whether there is a zero in the 

limits, so you can see what goes wrong…
– Record your results; note interesting or odd behaviors



12

Newton’s Method
• Based on Taylor series expansion:

– For small increment and smooth function, 
higher order derivatives are small and                    
implies

– If high order derivatives are large or first 
derivative is small, Newton can fail miserably

– Converges quickly if assumptions met
– Has generalization to n dimensions that is one 

of the few available
– See Numerical Recipes for ‘safe’ Newton-

Raphson method, which uses bisection when 
first derivative is small, etc.

...2/)('')(')()( 2 +++≈+ δδδ xfxfxfxf

0)( =+ δxf
)('/)( xfxf−=δ

Newton’s Method

f(x)

f’(x)

Initial guess of root



13

Newton’s Method Pathologies

f(x)

f’(x) ~ 0

Initial guess of root

1

2
Infinite cycle

Newton’s Method

public class Newton { // NumRec, p. 365

public static double newt(MathFunction2 func, double a,

double b, double epsilon) {

double guess= 0.5*(a + b);  // No real bracket, only guess

for (int j= 0; j < JMAX; j++) {

double fval= func.fn(guess);

double fder= func.fd(guess);

double dx= fval/fder;

guess -= dx;

System.out.println(guess);

if ((a - guess)*(guess - b) < 0.0) {

System.out.println("Error: out of bracket");

return ERR_VAL; // Experiment with this

} // It’s conservative

if (Math.abs(dx) < epsilon)

return guess;

}

System.out.println("Maximum iterations exceeded");

return guess;

}



14

Newton’s Method, p.2
public static int JMAX= 50;

public static double ERR_VAL= -10E10;

public static void main(String[] args) {

double root= Newton.newt(new FuncB(), -0.0, 8.0, 0.0001);

System.out.println("Root: " + root);

}

} // End Newton

public class FuncB implements MathFunction2 {

public double fn(double x) {

return x*x - 2;

}

public double fd(double x) {

return 2*x;    }   }

public interface MathFunction2 {

public double fn(double x);      // Function value

public double fd(double x);   }  // 1st derivative value

Examples
• f(x)= x2 + 1
– No real roots, Newton generates ‘random’ 

guesses
• f(x)= sin(5x) + x2 – 3 Root= -0.36667
– Try a= –1 and b = 2 (guess= 0.5)initially
– Using a= 0 and b = 2 (guess= 1) will fail with 

conservative Newton (outside bracket) 
• f(x)= ln(x2 –0.8x + 1) Roots= 0, 0.8
– a= 0 and b =1.2 (guess= 0.6) works
– a= 0.0 and  b= 8.0 (guess= 4.0) fails



15

Exercise A

• Download Newton:
– The functions on previous slide are 

implemented as FuncB, FuncC and FuncD
– Newton takes doubles a and b as arguments, 

but they are not a bracket. It averages them to 
create its first guess

– Experiment with different initial guesses
– Solutions are on previous slide

Exercise B
• Use Newton’s method application in Roots 

to experiment with the 5 functions
– Choose starting guess by clicking at one point along the 

x axis; red line appears
– Then just click anywhere. When you click, a yellow 

tangent line displays
– Click again, and the intersection of tangent and x axis is 

found, and the guess (red line) moves
– When it thinks it has a root, the line/dot turns green
– The app does not check whether there is a zero in the 

limits, so you can see what goes wrong…
– Record your results; note interesting or odd behaviors



16

Who Finds A Root?

MaybeMaybeUsuallysin (1/x)

MaybeMaybeMaybe5 sin(x) / x

NoNoYes1/x

YesYesNo0.1x2

UsuallyMaybeMaybe3 sin(x)

NewtonSecantBisectionFunction

Moral: You need to understand your function, its range,
its likely zeros and the method you propose to use


