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1.00 Lecture 26

Data Structures: 
Introduction 

Stacks 

Reading for next time: Big Java: 19.1-19.3 

Data Structures 
•	 Set of primitives used in algorithms,

simulations, operating systems, applications to: 
–	 Store and manage data required by algorithm 
–	 Provide only the access that is required 
–	 Disallow all other access 

•	 There are a small number of common data 
structures 
–	 We cover the basic version of the core structures 
–	 Many variations exist on each structure 

• It’s common to make application-specific modifications 

•	 We’ll both build them and use the Java built-in 
versions! 
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Stacks
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Single ended structure 
Last-in, first-out (LIFO) list 

Applications: 
1. Simulation: robots, machines 
2. Recursion: pending function calls 
3. Reversal of data 

Queues 
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Front Rear 

Double ended structure 
First-in, first-out (FIFO) list 

Applications: 
1. Simulation: lines 
2. Ordered requests: device drivers, routers, … 
3. Searches
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Double ended Queues (Dequeues)
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Double ended structure 
Applications: 
1. Simulation: production, operations 

Train 
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A dequeue can model both stacks and queues 

Priority Queues or Heaps
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• Highest priority element at top 
• “Partial sort” 
• All enter at bottom, leave at top 

Applications: 
1. Simulations: event list 
2. Emergency response modeling 
3. Searching (next most likely) 
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Heaps Modeled as Binary Tree 
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Binary tree has 2(k+1)-1 nodes 
A maximum of k steps are required to find (or not find) a node 

E.g. 220 nodes, or 1,000,000 nodes, in 20 steps! 
Binary trees can be built in many ways: heaps, search trees… 
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Binary Trees 

Applications: 
1. Searching and sorting (general purpose) 
2. Fast retrieval of data

Find/insert any item quickly (bottom, middle or top) 
More general than earlier data structures 

Trees 
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Each node has variable number of children 

Applications: 
1. Set operations (unions, intersections)
2. Matrix operations (basis representation, etc.)
3. Graphics and spatial data (quadtrees, R-trees, …) 
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Graphs 
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Applications 
1. Simulation 
2. Matrix representation 
3. General systems representation
4. Networks: telecom, transport, hydraulic, electrical, ... 

Relationships of Data 
Structures 

Graph 

Tree 
Many variations 

Binary tree Set 

Priority queue Many variations 

Three possible implementations
Dequeue 1. Arrays 

2. Linked lists
Stack Queue 3. Built-in Java classes 
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Exercise 
•	 What data structure would you use to 

model: 
– People getting on and off the #1 bus at the MIT 

stop thru front and back doors 
–	 A truss in a CAD program 
–	 A conveyor belt 
–	 The emergency room at a hospital 
–	 The lines at United Airlines at Logan 
–	 The Cambridge street network 
–	 How to go from MIT to all pts in Boston 
–	 Books to be reshelved at the library 

Stacks 
Stack s 

4 = Capacity -1
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Stack Interface 

import java.util.*; // For exception 

public interface Stack 

{ 

public boolean isEmpty(); 

public void push( Object o ); 

public Object pop() throws 

EmptyStackException; 

public void clear(); 

} 

// Interface Stack is an abstract data type 

// We will implement ArrayStack as a concrete 

// data type, to the Stack specification 

Using a Stack to Reverse an Array 

public class Reverse { 
public static void main(String args[]) { 

int[] array = { 12, 13, 14, 15, 16, 17 }; 
Stack stack = new ArrayStack(); 
for (int i = 0; i < array.length; i++) { 

Integer y= new Integer(array[i]); 
stack.push(y);


}

while (!stack.isEmpty()) {


Integer z= (Integer) stack.pop(); 
System.out.println(z); 

} 
} 

} 

// Output: 17 16 15 14 13 12 
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ArrayStack, 1 
// Download ArrayStack; you’ll be writing parts of it 

// Download Stack and Reverse also. 

import java.util.*; 

public class ArrayStack implements Stack { 

public static final int DEFAULT_CAPACITY = 8; 

private Object[] stack; 

private int top = -1; 

private int capacity; 

public ArrayStack(int cap) {

capacity = cap;

stack = new Object[capacity];


}

public ArrayStack() {


this( DEFAULT_CAPACITY );

}


Exercise: ArrayStack, 2 

public boolean isEmpty() { 

// Complete this method (one line) 

} 

public void clear() { 

// Complete this method (one line) 

} 



10

Exercise: ArrayStack, 3 

public void push(Object o) { 

// Complete this code 

// If stack is full already, call grow() 

} 

private void grow() { 

capacity *= 2; 

Object[] oldStack = stack; 

stack = new Object[capacity]; 

System.arraycopy(oldStack, 0, stack, 0, top); 

} 

Exercise: ArrayStack, 4 
public Object pop()


throws EmptyStackException


{


// Complete this code


// If stack is empty, throw exception


} 

// When you finish this, save/compile and run Reverse 
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Queues 

A queue 
new items at one end and remove old 
items from the other. 

1 2 43 ... nn-1n-2 n+1 

Remove 
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is a data structure to which you add 
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Queue 
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Wrap around! 
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Ring Queue 
Front points to 
first element. 

Rear points to 
rear element. 
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Ring Queue 
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rear element. 
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Queue Interface 

import java.util.*; 

public interface Queue 

{ 

public boolean isEmpty(); 

public void add( Object o ); 

public Object remove() throws 
NoSuchElementException; 

public void clear(); 

} 

Implementing a Ring Queue 

public class RingQueue implements Queue { 

private Object[] queue; 

private int front; 

private int rear; 

private int capacity; 

private int size = 0; 

static public final int DEFAULT_CAPACITY= 8; 
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RingQueue Data Members


queue: Holds a reference to the ring array 

front: If size>0, holds the index to the next 
item to be removed from the queue 

rear: If size>0, holds the index to the last 
item that was added to the queue 

capacity: Holds the size of the array referenced 
by queue 

size: Always >=0. Holds the number of items 
on the queue 

RingQueue Methods 
public RingQueue(int cap) { 

capacity = cap; 
front = 0; 
rear = capacity - 1; 
queue= new Object[capacity]; 

} 

public RingQueue() { 
this( DEFAULT_CAPACITY ); 

} 

public boolean isEmpty() { 
return ( size == 0 ); 

} 

public void clear() { 
size = 0; 
front = 0; 
rear = capacity - 1; 

} 
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RingQueue Methods 

public void add(Object o) {

if ( size == capacity )


grow(); 
rear = ( rear + 1 ) % capacity; 
queue[ rear ] = o; 
size++; 

} 

public Object remove() { 
if ( isEmpty() ) 

throw new NoSuchElementException(); 
else { 

Object ret = queue[ front ]; 
front = (front + 1) % capacity; 
size--; 
return ret; 

}

}


// See download code for grow() method 

Exercise 
• Download: 

– QueueSimulation 
– RingQueue 
– ColorUtil 

• Run QueueSimulation 
– Experiment with it 
– It runs the opposite way around the ring as our 

earlier example but is implemented the same 
way 

• Green points to front, red points to rear of queue 


