
1

1.00 Lecture 26

Data Structures:
Introduction

Stacks

Reading for next time: Big Java: 19.1-19.3

Data Structures
•	 Set of primitives used in algorithms,

simulations, operating systems, applications to:
–	 Store and manage data required by algorithm
–	 Provide only the access that is required
–	 Disallow all other access

•	 There are a small number of common data
structures
–	 We cover the basic version of the core structures
–	 Many variations exist on each structure

• It’s common to make application-specific modifications

•	 We’ll both build them and use the Java built-in
versions!

2

Stacks

z

d

q

b

Top

Single ended structure
Last-in, first-out (LIFO) list

Applications:
1. Simulation: robots, machines
2. Recursion: pending function calls
3. Reversal of data

Queues

e b w d u

Front Rear

Double ended structure
First-in, first-out (FIFO) list

Applications:
1. Simulation: lines
2. Ordered requests: device drivers, routers, …
3. Searches

3

Double ended Queues (Dequeues)

d a b c e

Double ended structure
Applications:
1. Simulation: production, operations

Train

1 2231213233

Track 1
Track 2

Engine Engine

Track 3

A dequeue can model both stacks and queues

Priority Queues or Heaps

e

a

b

c

d

Top

Bottom

• Highest priority element at top
• “Partial sort”
• All enter at bottom, leave at top

Applications:
1. Simulations: event list
2. Emergency response modeling
3. Searching (next most likely)

4

Heaps Modeled as Binary Tree

e

c
qd

fe vt

a

a d

a c

a

Binary Trees
Level Nodes
0 20

m
pe

fd vn

1 21

2 22

…

k 2k

Binary tree has 2(k+1)-1 nodes
A maximum of k steps are required to find (or not find) a node

E.g. 220 nodes, or 1,000,000 nodes, in 20 steps!
Binary trees can be built in many ways: heaps, search trees…

5

Binary Trees

Applications:
1. Searching and sorting (general purpose)
2. Fast retrieval of data

Find/insert any item quickly (bottom, middle or top)
More general than earlier data structures

Trees
m

pe

fd vo

n

a

Each node has variable number of children

Applications:
1. Set operations (unions, intersections)
2. Matrix operations (basis representation, etc.)
3. Graphics and spatial data (quadtrees, R-trees, …)

6

Graphs

eb

f g

a
h

d
i

c

Applications
1. Simulation
2. Matrix representation
3. General systems representation
4. Networks: telecom, transport, hydraulic, electrical, ...

Relationships of Data
Structures

Graph

Tree
Many variations

Binary tree Set

Priority queue Many variations

Three possible implementations
Dequeue 1. Arrays

2. Linked lists
Stack Queue 3. Built-in Java classes

7

Exercise
•	 What data structure would you use to

model:
– People getting on and off the #1 bus at the MIT

stop thru front and back doors
–	 A truss in a CAD program
–	 A conveyor belt
–	 The emergency room at a hospital
–	 The lines at United Airlines at Logan
–	 The Cambridge street network
–	 How to go from MIT to all pts in Boston
–	 Books to be reshelved at the library

Stacks
Stack s

4 = Capacity -1

3

Top

‘a’

‘b’

‘c’ 2 Push(‘a’)

1 Push(‘b’)Top
Push(‘c’)0Top

‘c’Pop()
‘b’ Top	 -1 Pop()

8

Stack Interface

import java.util.*; // For exception

public interface Stack

{

public boolean isEmpty();

public void push(Object o);

public Object pop() throws

EmptyStackException;

public void clear();

}

// Interface Stack is an abstract data type

// We will implement ArrayStack as a concrete

// data type, to the Stack specification

Using a Stack to Reverse an Array

public class Reverse {
public static void main(String args[]) {

int[] array = { 12, 13, 14, 15, 16, 17 };
Stack stack = new ArrayStack();
for (int i = 0; i < array.length; i++) {

Integer y= new Integer(array[i]);
stack.push(y);

}

while (!stack.isEmpty()) {

Integer z= (Integer) stack.pop();
System.out.println(z);

}
}

}

// Output: 17 16 15 14 13 12

9

ArrayStack, 1
// Download ArrayStack; you’ll be writing parts of it

// Download Stack and Reverse also.

import java.util.*;

public class ArrayStack implements Stack {

public static final int DEFAULT_CAPACITY = 8;

private Object[] stack;

private int top = -1;

private int capacity;

public ArrayStack(int cap) {

capacity = cap;

stack = new Object[capacity];

}

public ArrayStack() {

this(DEFAULT_CAPACITY);

}

Exercise: ArrayStack, 2

public boolean isEmpty() {

// Complete this method (one line)

}

public void clear() {

// Complete this method (one line)

}

10

Exercise: ArrayStack, 3

public void push(Object o) {

// Complete this code

// If stack is full already, call grow()

}

private void grow() {

capacity *= 2;

Object[] oldStack = stack;

stack = new Object[capacity];

System.arraycopy(oldStack, 0, stack, 0, top);

}

Exercise: ArrayStack, 4
public Object pop()

throws EmptyStackException

{

// Complete this code

// If stack is empty, throw exception

}

// When you finish this, save/compile and run Reverse

11

Queues

A queue
new items at one end and remove old
items from the other.

1 2 43 ... nn-1n-2 n+1

Remove
items here

Add items
here

is a data structure to which you add

Queue
Rear

‘c’‘b’

Front

12

Queue
Rear Rear Rear Rear

‘a’ ‘c’‘b’

Front Front

‘c’

FrontUnused!

‘d’

Rear

Run out of room!

Queue

‘c’

Front

‘d’

Rear

Wrap around!

13

Ring Queue
Front points to
first element.

Rear points to
rear element.

0

1
2 3

4

Front

‘c’

Cap’y-1

Rear

‘d’ ‘b’

Ring Queue
Front points to
first element.

Rear points to
rear element.

Cap’y-1

Front ‘a’ 0 Rear

1 4
‘b’ 2 3

Front
‘a’

‘c’ ‘d’

Front ‘b’

14

Queue Interface

import java.util.*;

public interface Queue

{

public boolean isEmpty();

public void add(Object o);

public Object remove() throws
NoSuchElementException;

public void clear();

}

Implementing a Ring Queue

public class RingQueue implements Queue {

private Object[] queue;

private int front;

private int rear;

private int capacity;

private int size = 0;

static public final int DEFAULT_CAPACITY= 8;

15

RingQueue Data Members

queue: Holds a reference to the ring array

front: If size>0, holds the index to the next
item to be removed from the queue

rear: If size>0, holds the index to the last
item that was added to the queue

capacity: Holds the size of the array referenced
by queue

size: Always >=0. Holds the number of items
on the queue

RingQueue Methods
public RingQueue(int cap) {

capacity = cap;
front = 0;
rear = capacity - 1;
queue= new Object[capacity];

}

public RingQueue() {
this(DEFAULT_CAPACITY);

}

public boolean isEmpty() {
return (size == 0);

}

public void clear() {
size = 0;
front = 0;
rear = capacity - 1;

}

16

RingQueue Methods

public void add(Object o) {

if (size == capacity)

grow();
rear = (rear + 1) % capacity;
queue[rear] = o;
size++;

}

public Object remove() {
if (isEmpty())

throw new NoSuchElementException();
else {

Object ret = queue[front];
front = (front + 1) % capacity;
size--;
return ret;

}

}

// See download code for grow() method

Exercise
• Download:

– QueueSimulation
– RingQueue
– ColorUtil

• Run QueueSimulation
– Experiment with it
– It runs the opposite way around the ring as our

earlier example but is implemented the same
way

• Green points to front, red points to rear of queue

