
1

1.00 Lecture 27

Data Structures:
Linked lists

Reading for next time: Big Java: 20.5

Lists as an Abstract Data Type

A list is a collection of elements that has an
order.
–	 It can have arbitrary length.
–	 You should be able to efficiently insert or

delete an element anywhere.
–	 You should be able to go through the list in

order an element at a time.

2

A List Interface

import java.util.*;

public interface List {

public boolean isEmpty();

public void addFirst(Object o);

public void addLast(Object o);

public boolean contains(Object o);

public Object removeLast()

throws NoSuchElementException;

public Object removeFirst()

throws NoSuchElementException;

public boolean remove(Object o); // Only in download

public void clear();

public int size();

public void print();

public ListIterator listIterator(); // Only in download

}

// This interface doesn’t have an add() method to

// place an element in an arbitrary position. It’s

// straightforward but tedious—we don’t cover it

Arrays Don’t Work
•	 If we used an array:
–	 Inserting an element at any place except the

end of the list is very expensive because all
the elements from the point of insertion until
the end must be moved back to make room for
the new entry.

–	 There is a similar problem with deletion.

a b c e f g h i j k l m

d

• For this reason, lists use a linked
implementation.

3

Singly Linked List Diagram

List

first last

Node 1

Item 1

Node n

Item 2 Item n

... null Node 2

next item

Each Node has two data members:

item next item next item next

Singly Linked Lists, 2
•	 The List points to the first Node, and to the last
Node to make it easier to append items.
–	 “points to” means has a reference to.

•	 A Node doesn't contain the item.
–	 It has a reference to the item, which can be any Object.
–	 By pointing to, rather than containing the item, we can

have one Node (and List) implementation that works for
all lists, regardless of what object type they hold.

•	 The last Node’s next data member is null,
indicating the end of the list.

4

The Node Inner Class
public class SLinkedList implements List {

private static class Node { // Pkg access in download

Object item; // to support visual demo

Node next;

Node(Object o, Node n) {

item = o; next = n;

}

}

. . .

// This example uses inner classes; you don’t have to

Generic vs. Typed Lists
•	 The List interface we have specified is general like the

Java ArrayList class. It stores and retrieves Objects.
•	 If you are writing your own list class, and you know you will

only be handling Students, say, you can replace the
Object fields with Student fields. For example,

private static class Node {

Student s;

Node next;

Node(Student s, Node n) {

this.s = s;

next = n;

}

}

public void addFirst(Student s); // Etc.

5

The SLinkedList Data Members

•	 Only first is necessary.
• last and length could be found by traversing

the list, but having these members and keeping
them up to date makes the calls size() and
addXXX() faster. Implementations vary on this
point.

private int length = 0;

private Node first = null;

private Node last = null;

Beware the Special Case

•	 The tricky part about implementing a linked list is
not implementing the normal case for each of the
methods, for instance, removing an object from
the middle of the list.

•	 What's tricky is making sure that your methods
will work in the exceptional and boundary cases.

•	 For each method, you should think through
whether the implementation will work on
–	 an empty list,
– a list with only one or two elements,

– on the first element of a list,

–	 on the last element of a list.

6

addFirst(Object o)

public void addFirst(Object o)

{

if (first == null) { // If the list is empty

first = new Node(o , null);

last = first;

}

else {

first = new Node(o, first);

}

length++;

}

addFirst(), before

List

first last

Node 1

Item 1

Node n

Item n

... null
item next item next

7

addFirst(), after

List

first last

Node 1

Item 1

Node n

Item n

... null Node 0

Item 0

item next item next item next

addFirst(), special case

List

first last

Node 1

Item 1

null

before

List

first last

null

after

item next

8

Exercise

•	 Download List and SLinkedList
•	 Write addLast() in SLinkedList:
–	 Draw a picture of the list before and after
–	 Handle the special case of a currently empty

list
–	 Remember to increment the list length

Solution: addLast(), before

List

first last

Node 1

Item 1

Node n

Item n

... null Node 0

Item 0

item next item next item next

Copy of slide 16

9

Solution: addLast(), after

List

first last

Node 1

Item 1

Node n

Item n

... Node 0

Item 0

Node n+1

Item n+1

null
item next item next item next item next

Solution: addLast(), special case

List

first last

Node 1

Item 1

null

before

List

first last

null

after

item next

10

Exercise

• Write the print() method
–
–

Check if list is empty
Otherwise “walk” the list and print out each item

List

first last

Node 1

Item 1

Node n

Item 2 Item n

... null Node 2
item next item next item next

removeFirst(), before

List

first last

Node 1

Item 1

Node n

Item 2 Item n

... null Node 2
item next item next item next

11

removeFirst(), after

List

first last

Node 1

Item 1

Node n

Item 2 Item n

... null Node 2
item next item next item next

removeFirst(), special case

List

first last

Node 1

Item 1

null

before

List

first last

Node 1

Item 1

null

after

item next item next

12

Exercise
•	 Write removeLast()
–	 We give you pictures of the list before and

after removing the last element
–	 We give you the special cases where the list

currently has:
•	 No elements
•	 One element

– You only need to write the standard case
•	 Find the Node before the last Node; it will become

the last Node
•	 Set its next field to null
•	 Return the last item (removeLast() returns an Object)
•	 Remember to decrement list length

removeLast(), before

List

first last

Node 1

Item 1

Node 3

Item 2 Item 3

null Node 2
item next item next item next

13

removeLast(), after

List

first last

Node 1

Item 1

Node 3

Item 2 Item 3

nullNode 2

t t

x x
null

return

item next item next item next

x

Exercise
public Object removeLast()

throws NoSuchElementException {

if (first == null) // Empty list

throw new NoSuchElementException();

else if (first == last) { // 1 element in list

Node t= first;

first= last= null;

length= 0;

return t.item;

}

else {

// Your code here (remove “return null;”)

}

}

}

14

contains()

public boolean contains(Object o) {

boolean found= false;

if (first == null)

return false;

Node t= first;

while (t != null) {

if (t.item.equals(o)) {

found= true;

break;

}

t= t.next;

}

return found;

}

Other methods
public int size() {

return length; }

public boolean isEmpty() {

return(first == null); }

public void clear() {

first = last = null;

length = 0;

}

// Note that we’ve implemented a double ended queue:

// elements can arrive or leave at front or rear

15

ListTest
// Download and run ListTest to use your SLinkedList

public class ListTest {

public static void main(String[] args) {

SLinkedList a= new SLinkedList();

while (true) {

String text= JOptionPane.showInputDialog(

"Enter 1-addFirst, 2-addLast, 3-removeFirst,

4-removeLast, 5-contains, 6-quit: ");

int action= Integer.parseInt(text);

if (action == 6)

break;

if (action== 1 || action== 2)

text= JOptionPane.showInputDialog("Enter
string to store in list: ");

// Continued

ListTest, p.2
try {

if (action == 5)

text= JOptionPane.showInputDialog("Enter string

to find ");

if (action == 1)

a.addFirst(text);

else if (action == 2)

a.addLast(text);

else if (action == 3)

a.removeFirst();

else if (action== 4)

a.removeLast();

else

System.out.println("List has " + text + "?: “

+ a.contains(text));

} catch (NoSuchElementException e) {

System.out.println("List empty (exception)"); }

a.print();

} } }

16

Exercise
•	 Download:

–	 SLinkedListApp
–	 SLinkedListView
–	 ListUtil
–	 Screen
–	 ListIterator
–	 ListIteratorView

•	 Rename your SLinkedList to SLinkedList1
•	 Run SLinkedListApp and experiment

–	 Enter one- or two-digit integers as the ‘items’ in the list
–	 Remove and double aren’t implemented
–	 We don’t cover ListIterator, though you can try it

•	 Iterators are a generic interface to manage many data
structures

Linked List Uses
•	 Can implement stacks, queues, trees, and almost any

other data structure as a linked list or array
–	 Choose based on application needs, based on how dynamic

your data is, whether you need to insert in the middle of your
data…

–	 We still have trees and graphs to cover, which handle
dynamic data well

•	 Doubly-linked lists are convenient for some data
structures, as shown on next page:
–	 When you have to add and/or delete at both ends of the data

structure often

17

Doubly Linked List Diagram

List

first last

Node 1

Item 1

Node n

Item 2 Item n

... null Node 2
item next item next item next

prev prev prev
null

