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Administrative Stuff

• Check your grades on MIT server and with TA before final exam
• Office Hours:

– This week – normal
– Next week - Review Session and May 12

• Final
– Covers lectures 1 to 36
– Wed May 18, 1:30pm-4:30pm,
– Final Review: Wednesday, May 11th, 7-9PM
– Open book, open notes

• Return laptops @ final exam, or beforehand  (MWF 
10-2).  You must bring all your accessories too. (Duh.)
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Implement this tree
A
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• Node class
– Needs to hold arbitrary number of children

• Tree class
– Implement this tree in buildExampleTree



Streams Overview
• Java programs communicate with the outside world 

using streams
– Good way to input lots of info.
– Good way to store output and communicate results to other 

programs, perhaps written in other languages entirely

• I/O streams: work in one direction only
– Input stream: control data coming into the program
– Output stream: control data leaving the program

• Streams: FIFO queues
– First In First Out



General Strategy for reading 
from and writing to a Stream

• Reading
– Open a stream
– while more information

• read information
– close the stream

• Writing
– Open a stream
– while more information

• write information
– close the stream



Important abstract Stream classes

• InputStream
– Read bytes

• OutputStream
– Write bytes

• Reader
– Read chars

• FileWriter
– Write chars



Important Stream Classes

• FileInputStream
– Read data in binary format from files

• FileOutputStream
– Write data in binary format to files

• FileReader
– Read text data from files

• FileWriter
– Write text data to files



Connecting Streams
• Each stream class has a specific functionality.
• Streams can be connected to get more functionality

• Example
BufferedReader
Buffers the character stream from FileReader for efficiency
and allows you to read line by line

FileReader input = new FileReader("C:\\test.txt");
BufferedReader bufferedIn = new BufferedReader(input); 

• Use StringTokenizer to break a string into smaller pieces, or tokens:
StringTokenizer toke=newStringTokenizer(str,”\t”); //split on tab
String thisToken=toke.nextToken(); 



Example
try
{

Reader reader = new FileReader(“input.txt”);
int next = reader.read();
char c;
if (next != -1){ //check for end of input

c = (char)next;
// do something with the character c

}
char[] buf = new char[512];
int nRead = reader.read(buf);
if(nRead != -1)

{ // do something with the char array buf }  
}
Catch (IOException e)
{ }



Exercise

• You are given a file tas.txt and a class 
TACopy.java which copies the file tas.txt to 
another file tas2.txt

• Modify the code so that TACopy.java
copies the file tas.txt and prints each TA on 
a separate line

• The TAs are separated by a tab (“\t”) and 
are all on one line.  Use StringTokenizer



Object Serialization

• Process of reading and writing objects to a 
stream is called object serialization

• Write objects to a stream using 
ObjectOutputStream and read objects to a 
stream using ObjectInputStream



Serialization Diagram
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Serialization Example : Writing 
Object to an ObjectOutputstream

try{
FileOutputStream out = new 
FileOutputStream("theTime");
ObjectOutputStream s = new 
ObjectOutputStream(out);
SerializeExample b = new   

SerializeExample();
s.writeObject("Today");
s.writeObject(new Date());
s.writeObject(b);
s.close();}
catch(IOException e){ }



Serialization Example: Writing object 
from an ObjectInputStream

try{
FileInputStream in = new FileInputStream("theTime");
ObjectInputStream s = new ObjectInputStream(in);
String today = (String)s.readObject();
Date date = (Date)s.readObject();
SerializeExample ex = (SerializeExample)s.readObject();
System.out.println(ex.a);
s.close();
}
catch(IOException e)
{}
catch(ClassNotFoundException e)
{}



Questions

• Suppose you try to open a file for reading 
that does not exist. What happens?

• Suppose you try to write an object that is 
not serializable to the output stream. What 
happens?



Problem Set 10: Overview

• Read and organize the data from a specially 
formatted text file.

• get user input to determine which message to 
display next and display the next message.

• Display the response choices for each message.
• Create an output file using Java streams.

– store the session and all messages displayed in this 
file.



PS10:  Suggestion
• Can store the information in the 

Diagnostic.txt file in a tree
• Once the user specifies an answer, find 

the corresponding node in the tree and 
display the new question or answer 
corresponding to this choice.

• Create an output file documenting the 
steps the user has taken (nodes that 
have been visited)



PS10: Node

• Each node has
– ID number, message, children
– How can you represent a node’s children?
– Methods

• toString or some print method
• What else would be useful?



Show text file

• Look at the text file given with the pset.  
Diagnostic.txt



PS10: Example
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PS10: Streams

• What should you look out for?
– What exceptions should you handle?

• FileNotFound
• IO
• What else?



GUI

• Look at windows XP printer troubleshooting
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