
1.00 Tutorial 11
Trees

Streams
pset10

Outline

• Administrative stuff
• Trees
• Streams
• PS #10

Administrative Stuff

• Check your grades on MIT server and with TA before final exam
• Office Hours:

– This week – normal
– Next week - Review Session and May 12

• Final
– Covers lectures 1 to 36
– Wed May 18, 1:30pm-4:30pm,
– Final Review: Wednesday, May 11th, 7-9PM
– Open book, open notes

• Return laptops @ final exam, or beforehand (MWF
10-2). You must bring all your accessories too. (Duh.)

A

B C

D

C’s parent

E’s ancestors

C’s children

B’s descendants
or the subtree

rooted at D

leaves

H I

E F G

Tree Terminology

Implement this tree
A

B C

E F G

• Node class
– Needs to hold arbitrary number of children

• Tree class
– Implement this tree in buildExampleTree

Streams Overview
• Java programs communicate with the outside world

using streams
– Good way to input lots of info.
– Good way to store output and communicate results to other

programs, perhaps written in other languages entirely

• I/O streams: work in one direction only
– Input stream: control data coming into the program
– Output stream: control data leaving the program

• Streams: FIFO queues
– First In First Out

General Strategy for reading
from and writing to a Stream

• Reading
– Open a stream
– while more information

• read information
– close the stream

• Writing
– Open a stream
– while more information

• write information
– close the stream

Important abstract Stream classes

• InputStream
– Read bytes

• OutputStream
– Write bytes

• Reader
– Read chars

• FileWriter
– Write chars

Important Stream Classes

• FileInputStream
– Read data in binary format from files

• FileOutputStream
– Write data in binary format to files

• FileReader
– Read text data from files

• FileWriter
– Write text data to files

Connecting Streams
• Each stream class has a specific functionality.
• Streams can be connected to get more functionality

• Example
BufferedReader
Buffers the character stream from FileReader for efficiency
and allows you to read line by line

FileReader input = new FileReader("C:\\test.txt");
BufferedReader bufferedIn = new BufferedReader(input);

• Use StringTokenizer to break a string into smaller pieces, or tokens:
StringTokenizer toke=newStringTokenizer(str,”\t”); //split on tab
String thisToken=toke.nextToken();

Example
try
{

Reader reader = new FileReader(“input.txt”);
int next = reader.read();
char c;
if (next != -1){ //check for end of input

c = (char)next;
// do something with the character c

}
char[] buf = new char[512];
int nRead = reader.read(buf);
if(nRead != -1)

{ // do something with the char array buf }
}
Catch (IOException e)
{ }

Exercise

• You are given a file tas.txt and a class
TACopy.java which copies the file tas.txt to
another file tas2.txt

• Modify the code so that TACopy.java
copies the file tas.txt and prints each TA on
a separate line

• The TAs are separated by a tab (“\t”) and
are all on one line. Use StringTokenizer

Object Serialization

• Process of reading and writing objects to a
stream is called object serialization

• Write objects to a stream using
ObjectOutputStream and read objects to a
stream using ObjectInputStream

Serialization Diagram
Live Objects Serialized

TypeA
int

double

TypeB

TypeB
int

int

String

int

double

int

intTypeB
TypeA methods

TypeB methods

TypeA hdr

TypeB hdr

String

Serialization Example : Writing
Object to an ObjectOutputstream

try{
FileOutputStream out = new
FileOutputStream("theTime");
ObjectOutputStream s = new
ObjectOutputStream(out);
SerializeExample b = new

SerializeExample();
s.writeObject("Today");
s.writeObject(new Date());
s.writeObject(b);
s.close();}
catch(IOException e){ }

Serialization Example: Writing object
from an ObjectInputStream

try{
FileInputStream in = new FileInputStream("theTime");
ObjectInputStream s = new ObjectInputStream(in);
String today = (String)s.readObject();
Date date = (Date)s.readObject();
SerializeExample ex = (SerializeExample)s.readObject();
System.out.println(ex.a);
s.close();
}
catch(IOException e)
{}
catch(ClassNotFoundException e)
{}

Questions

• Suppose you try to open a file for reading
that does not exist. What happens?

• Suppose you try to write an object that is
not serializable to the output stream. What
happens?

Problem Set 10: Overview

• Read and organize the data from a specially
formatted text file.

• get user input to determine which message to
display next and display the next message.

• Display the response choices for each message.
• Create an output file using Java streams.

– store the session and all messages displayed in this
file.

PS10: Suggestion
• Can store the information in the

Diagnostic.txt file in a tree
• Once the user specifies an answer, find

the corresponding node in the tree and
display the new question or answer
corresponding to this choice.

• Create an output file documenting the
steps the user has taken (nodes that
have been visited)

PS10: Node

• Each node has
– ID number, message, children
– How can you represent a node’s children?
– Methods

• toString or some print method
• What else would be useful?

Show text file

• Look at the text file given with the pset.
Diagnostic.txt

PS10: Example

0

4 5 6 7321 8

9 14 79 84 89 94 99 99

10 11

12 13

-1 -1

PS10: Streams

• What should you look out for?
– What exceptions should you handle?

• FileNotFound
• IO
• What else?

GUI

• Look at windows XP printer troubleshooting

	1.00 Tutorial 11TreesStreamspset10
	Outline
	Administrative Stuff
	Tree Terminology
	Implement this tree
	Streams Overview
	General Strategy for reading from and writing to a Stream
	Important abstract Stream classes
	Important Stream Classes
	Connecting Streams
	Example
	Exercise
	Object Serialization
	Serialization Diagram
	Serialization Example : Writing Object to an ObjectOutputstream
	Serialization Example: Writing object from an ObjectInputStream
	Questions
	Problem Set 10: Overview
	PS10: Suggestion
	PS10: Node
	Show text file
	PS10: Example
	PS10: Streams
	GUI

