
1.00

Tutorial 6

(Abstract classes, Interfaces and

Pset5)

Topics

• Abstract classes
• Interfaces
• ProblemSet 5 discussion

Abstract Classes

•	 An Abstract class cannot be instantiated

•	 Abstract classes can have data fields and

concrete methods
•	 Abstract classes can also contain abstract

methods
– Any subclass must implement all of the

abstract methods (provided the subclass itself
is not abstract)

Abstract Class Example

Here is modified example where now Animal extends an
abstract class LivingThing

public abstract class

LivingThing {

private String habitat;

public LivingThing(){

habitat=“earth”;

}

public class Animal extends

LivingThing {

//as before }

public class Lion extends

Animal{

//as before }

jOb ect

LivingThing

Animal

Lion

Abstract Class Questions

•	 Can you create an object
from LivingThing ? Why ?

• Now what are the types of

–	class Animal
–	class Lion

• What fields can each of the

above classes access ?

jOb ect

LivingThing

Animal

Lion

Interfaces Summary

•	 An interface is a collection of method declaration
(and optionally, public constants).

–	 All methods are abstract (but the abstract keyword is not
used).

–	 All methods are automatically public.

•	 An interface describes what its implementing
classes should do

–	 Ensure that some required piece of functionality is present in every
implementing class.

–	 Allow two totally different kinds of objects with no inheritance

relationship to be handled using same code.

•	 Any class implementing a particular interface must
define the how.

•	 Classes can implement one or more interface

Interface Exercise

•	 Write an interface called Endangered. It has
one method called getPopulation()

• Now modify the Lion class so that it

implements the Endangered interface

– What additional method is required in the
Lion class ?

PS 5: Problem Definition

Town i:
- pollutant production rate, Pi

- pollutants discharged into
river: (1-x)Pii

- Flow rate downstream: Fi

- Conc. of pollutants downstream:
Ci = [(1-x)Pi + Fin Cin]/ Fii

- Fraction of pollutants removed
in river: ri

Conc. Eqn for Towns

• C0= ((1- x0) P0) / F0	 (Boxboro)

• C1= ((1- x1) P1) / F1	 (Sudbury)

•	 C2= (F0(1-r0)C0 + F1(1-r1)C1 + (1-x2)P2)/ F2
(Acton)

• C3= (F2(1-r2)C2 + (1-x3)P3)/ F3	 (Concord)

PS 5 (2)

TreatmentPlant

(Abstract class)

Pl Pl Plant1 ant2 ant3

Plant i:
- getCost()
- getArea()
- getMaxRemoved()

Use polymorphism

PS 5 (3)

• CalculateConcentration method:
– Need something to store data on which towns/plants are upstream of

a particular town

• TreatmentPlantTest,java

Main():
- input plant type for each town
- output pollution concentration downstream for each plant

- output cost, area and maximum pollutants removed from each
plant

COMPARISON OF ABSTRACT CLASSES AND

INTERFACES

Abstract Class (A)

Usually used as a base class at the top of a hierarchy
(ex: Shape…)

Other class inherit from A (keyword "extends")

A class can inherit from one abstract class only
(multiple inheritance is not supported in Java)

An abstract class can have instance variables and
methods

Methods can be private or public

Methods can be concrete or abstract (with the
keyword "abstract" used explicitly)

Objects of A cannot be instantiated using the keyword
"new" (Shape s = new Shape(); is not allowed)

A reference to an object of type A is allowed ("Shape
s;" or "Shape s = new Square();" are allowed

A concrete class inheriting from A must override the
abstract methods of A

Interface (M)

No hierarchy implied. Can be used with disparate
objects (ex: IAge, IColor…)

Other classes implement M (keyword "implements")

A class can implement multiple interfaces

An interface is usually a collection of method
declarations only, but it also supports the declaration
of constants (which are automatically final)

All methods are automatically public

All methods are abstract (without actually being
preceded by the abstract keyword), i.e. they have a
name, return type and parameters but no
implementation

Objects of M cannot be instantiated using the
keyword "new" (IAge a = new IAge(); is not allowed)

A reference to an object of type M is allowed (" IAge
a;" or " IColor c = new Wall();" are allowed)

A concrete class implementing M must implement
ALL methods of M

Review Exception

•	 Used to handle malfunctions that must be
processed in a different method from
where they are detected.

•	 Programmer must work to handle the
exception

•	 If a method can throw an exception, you
can declare the type of exception in the
header after the keyword throws.

Review Continued

• try/catch & throw

try {

A a = new A();

int i =a.myMethod();

}

catch(Exception e) {

// Do something

public int myMethod()

invoke throws Exception {

// If something

// goes wrong:

throw new Exception();

exception thrown }
// Otherwise

result returned // return the result:
return k;

}

Exercise - Exception

•	 Step 1: Complete a static method
factorial()

- Takes non-negative integer as an argument

- If negative number is passed, throw an
IllegalArgumentException

- Otherwise, calculate and return the result

Exercise - Exception

•	 Step 2: Test this method with
try/catch block
- Complete catch() block

(how to handle the error)

- Try factorial(5)

- Try factorial(-2)

• Step 3: Discuss what would happen

if we didn’t use try/catch block

Exercise - Exception

public static int factorial(int n)

throws IllegalArgumentException {

if (n < 0) { throw new IllegalArgumentException(); }

int result = 1;

for (int i = n; i > 0; i--) { result *= i; }

return result;

}

public static void main(String[] args) {

try {

int a = factorial(5);

int b = factorial(-2);

}

catch (IllegalArgumentException ex) {

System.out.println("Invalid input");

}

}

