
MIT OpenCourseWare 
http://ocw.mit.edu 

6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


� 

6.047/6.878 Fall 2008 - Problem Set 3 

Due: Monday October 6, 2008 at 8pm 

1.	 Hidden Markov models and protein structure 

One biological application of hidden Markov models is to determine the secondary structure (i.e. 
the general three dimensional shape) of a protein. This general shape is made up of alpha helices, 
beta sheets, turns and other structures. In this problem we will assume that the amino acid 
composition of these regions is governed by an HMM. 

In order to keep this problem relatively simple, we do not use actual transition values or emission 
probabilities. We will use the state transition probabilities of: 

Alpha Helix Beta Sheet Turn Other 
Alpha Helix 0.7 0.1 0.2 0.0 
Beta Sheet 0.2 0.6 0.0 0.2 
Turn 0.3 0.3 0.1 0.3 
Other 0.3 0.3 0.0 0.4 

where, for example, P (Alpha Helix Turn) = 0.2. The start state is always Other and the →
emission probabilities are: 

Amino Acid Alpha Helix Beta Sheet Turn Other 
M 0.35 0.10 0.00 0.05 
L 0.30 0.05 0.15 0.15 
N 0.15 0.30 0.10 0.20 
E 0.10 0.40 0.10 0.15 
A 0.05 0.00 0.35 0.20 
G 0.05 0.15 0.30 0.25 

(a) Draw this HMM. Include the state transition probabilities and the emission probabilities for 
each state. 

(b) What is the probability of the second emitted character being an A? 

(c) Give the most likely state transition path for the amino acid sequence	 MLAN using the 
Viterbi algorithm. What is P (X, Y ) for X = MLAN and Y = (the Viterbi path)? (Include 
the Viterbi algorithm table in your solution.) 

(d) How many other paths could give rise to the same sequence MLAN? Compute the total 
probability P (X) for X = MLAN , defined as P (X) = Y P (X, Y ) (although this is not 
how you should compute it!). Compare this to P (X, Y ) for the Viterbi path in part (c). 
What does this say about the reliability of the Viterbi path? 

2.	 Markov chains for CpG classification 

In this problem, we will simulate and test the use of Markov chains for classifying DNA sequences 
based on nucleotide frequencies. In these Markov chains, we have four states, one for each 
nucleotide, and transition probabilities between the states. This is a degenerate case of an HMM 
in which the state fully determines the emission (thus removing the “hiddenness”). 

Page 50 of Durbin gives the following transition probabilities for the models of being inside a CpG 
island (M1) and outside a CpG island (M2): 

1 



6.047/6.878 Fall 2008	 Problem Set 3


M1 A C G T 
A 0.180 0.274 0.426 0.120 
C 0.171 0.367 0.274 0.188 
G 0.161 0.339 0.375 0.125 
T 0.079 0.355 0.384 0.182 

M2 A C G T 
A 0.300 0.205 0.285 0.210 
C 0.322 0.298 0.078 0.302 
G 0.248 0.246 0.298 0.208 
T 0.177 0.239 0.292 0.292 

where, for example, PM1(A G) = 0.426. We will additionally assume a uniform distribution →
among nucleotides in the initial state (that is, the chains start in each state with probability 0.25). 

Write code to (1) generate random sequences from Markov chains defined by M1 and M2 and 
(2) find the probability of a given sequence being generated by M1 or M2. 

(a) Simulate 10000 sequences of length 6 from M1.	 Of the sequences simulated, how often is 
the probability of the sequence being generated by M2 higher than the probability of it being 
generated by M1? 

(b) Now, simulate 10000 sequences of length 6 from M2. Of the sequences simulated, how often 
is the probability of the sequence being generated by M1 higher than the probability of it 
being generated by M2? 

(c) What do the two parts above tell you about the potential for error when classifying sequences 
into regions of CpG islands using a simple likelihood estimate? 

(d) If you had a prior on how often a sequence was part of a CpG island, how would you use this 
information to better classify sequences? 

In addition to your answers above, include a printout the code you used. 

3.	 HMMs, state durations, and GENSCAN 

An important use of HMMs is to decode or parse a genome into its biological components, such 
as exons, introns, CpG islands, etc. In this problem, we will examine how the accuracy of HMM 
predictions is affected by certain inherent properties of the model. 

In lecture, we developed an HMM to detect CpG islands that requires eight states in order to 
capture the CpG dinucleotide bias. To simplify this problem, instead of searching for CpG islands, 
we will simply search for High-GC (on average 60% G or C) and Low-GC regions (on average 60% 
A or T). Thus, our model requires only two states. We have provided a program, viterbi.py, 
which you will complete and use to decode several artificial genomes, and then compare the 
resulting predictions of High-GC and Low-GC regions to a provided (correct) annotation. More 
details about this program are included at the end of the problem. 

(a) In most HMMs, the self-loop transition probabilities akk are large, while the transition prob
abilities between different states akl are small. Once a Markov chain with these transition 
probabilities enters state k, it tends to stay in state k for a while. The state duration is the 
total number of steps for which the Markov chain stays in the same state, before switching 
to another state. What is the expected (mean) state duration of state k as a function of the 
transition probability akk? What is the distribution of state durations P (Dk = d)? 

(b) Complete the implementation of the Viterbi algorithm in viterbi.py. Based on the HMM 
parameters hard-coded into the program, what are the expected state durations for High-
GC and Low-GC regions? Apply the finished program to the data file hmmgen, which was 
generated using the same HMM, and verify that your program achieves ∼83% accuracy. 

2


http:viterbi.py
http:viterbi.py


6.04716.878 Fall 2008 Problem Set 3 

(c) Now apply your program t o  the files mysteryl, mystery2, and mystery3. How do the 
(correct) state duration distributions in the mystery sequences differ and what do they have 
in common? What accuracy levels does your H M M  achieve on these sequences? How does 
each Viterbi-predicted state duration distribution differ from the correct distribution? (You 
don't need t o  include the plots in your solutions.) 

(d) Would re-training the H MM parameters according t o  the procedure described in lecture, using 
the correct annotations as training data, improve the accuracy o f  the Viterbi annotation for 
the mystery sequences? Why or why not? 

(optional) Try t o  make the decoder perform better by adjusting the hard-coded model pa-
rameters. I f  you succeed, can you explain why? 

(e) As you are now aware, the length distribution of genomic elements can strongly affect the 
predictive accuracy o f  an H M M  used t o  decode them. Unfortunately, most elements in 
real genomes do not follow the length distribution you derived in part (a). By reading the 
following paper (or any other sources), describe how the gene finder GENSCAN addresses 
this issue. How is it possible, algorithmically, t o  use state duration distributions that differ 
from the one you derived in part (a)? 

Burge C, Karlin S. Prediction o f  complete gene structures in human genomic DNA. J Mol 
Bio 268(1):78-94, 1997. 

Details about viterbi .pv 

The nearly complete program viterbi .py performs the following: 

a Reads in a data file containing a DNA sequence and an authoritative (correct) annotation, 
consisting o f  a string of pluses and minuses, specifying where the High-GC and Low-GC 
regions are, respectively. 

a Calculates the base composition o f  the High-GC and Low-GC regions, calculates the mean 
length o f  High-GC and Low-GC regions, and plots a histogram of the lengths o f  the High-GC 
and Low-GC regions. (All with respect t o  the authoritative annotation.) 

a Performs Viterbi decoding on the DNA sequence, using a hard-coded HMM designed t o  
detect High-GC and Low-GC regions. (This is the part you will complete.) 

a Calculates the base composition o f  the High-GC and Low-GC regions, calculates the mean 
length o f  High-GC and Low-GC regions, and plots a histogram of the lengths o f  the High-GC 
and Low-GC regions. (All with respect t o  the Viterbi annotation.) 

Calculates the accuracy o f  the Viterbi decoding, defined as the percentage of predicted plus 
and minus states that match the authoritative annotation. 

4. Gibbs sampling. Implement a Gibbs sampling moti f  finder. We provide a template file gibbs .py, 
but you are free t o  use a programming language o f  your choice. The Gibbs sampling algorithm 
can be summarized as follows: 

GibbsSampler(S1,5'2,...,St,L)  : 
Inputs : 
S1,S2,...,St: strings that contain a common pattern 
L :  the length of the probabilistic pattern to find 

Choose a substring of length L from each of S1,S2,...,St 



� � 

6.047/6.878 Fall 2008 Problem Set 3


8 Repeat until convergence : 
9 Choose a sequences Sc 

10 

11 Create a pattern using all substrings except the one from Sc 

12 

13 Score all substrings of length L in Sc using the pattern 
14 

15 Stochastically choose a new substring from Sc with 
16 probability proportional to its score 
17 

18 Return the estimated pattern 

Many details of this procedure have intentionally been left ambiguous. Specific implementations 
are described in lecture and J412, but we encourage you to experiment with different approaches. 
Make sure to discuss your design decisions in your solutions. 

Run your code on the four provided data sets. data1 is an artificial data set with a planted, 
identical motif, data2 is an artificial data set with a degenerate motif, and data3 and data4 
are real promoter sequences from yeast known to bind the transcription factors ACE2 and MBP1, 
respectively. The GC content of data1 and data2 is approximately 0.5 and the GC content of 
data3 and data4 is approximately 0.37. 

Turn in a printout of the code you added in addition to what patterns of length 10 your program 
found consistently for each the four provided data sets. Repeat the procedure several times for 
each data set until you believe you have found the strongest patterns. The pattern you find in 
data1 should be very strong. 

5. (6.878 only) Gibbs sampling in-depth. Given only a procedural description of Gibbs sampling 
(e.g. from problem 4), it may not be obvious that it converges to a meaningful answer. In this 
problem, we’ll walk through a simplified version of the algorithm in order to understand how and 
why it works. 

We will look for a motif of length (L + 1) in just two sequences, X = and x1x2 · · · xM+L 

Y yN+L. Let P (I = i, J = j) be the joint probability that a motif starts at position i in= y1y2 · · · 
sequence X, i ∈ {1, 2, . . . ,M}, and at position j in sequence Y , j ∈ {1, 2, . . . , N}. If we knew this 
distribution, then we could find the most likely positions for a motif as arg maxP (I = i, J = j). 

i,j 

Unfortunately, we do not know P (I = i, J = j). 

(a) Design expressions for the conditional distributions P (I = i|J = j) and P (J = j|I = i). 
These expressions need not be closed form. Conceptually, P (I = i|J = j) answers the 
question: given that some motif appears in Y yj+L, what is the probability that at yj · · · 
the same motif appears in X at xi · · · xi+L? (Hint: A simple heuristic would define P (I = 
i|J = j) to be proportional to the percent identity of xi · · · xi+L and yj · · · yj+L.) It is 
up to you how, or whether, to incorporate a background model. In any case, for all j, 
M N

P (I = i|J = j) = 1, and for all i, P (J = j|I = i) = 1. 
i=1 j=1 

The Gibbs sampler initializes with an arbitrary position in X, which we’ll call I0. We stochas
tically choose J0 (a position in Y ) according to P (J0 = j|I0 = i), one of the conditional 
distributions you defined. Then, we choose I1 according to P (I1 = i|J0 = j). Then we choose 
J1, I2, J2, I3, J3, I4, · · · . 

4




� 

6.047/6.878 Fall 2008	 Problem Set 3


(b) We can view the conditional distributions you defined in part (a) as transition matrices in 
this sequence of positions, giving the probability of the next choice based on the last choice. 
Assume you have computed the transition matrices A and B where aji = P (I = i|J = j) 
and bij = P (J = j|I = i). Give a formula for the transition matrix C where cii� = P (Ik+1 = 
i�|Ik = i). 

(c) Now, consider a Markov chain governed by the transition matrix	 C, which generates the 
sequence I1, I2, I3, . . . The states in this Markov chain correspond to positions in the sequence 
X. (We could similarly derive a Markov chain for Y .) What is P (I6878 = i|I0 = i0) in terms 
of C? 

N

(d) Determine the marginal distribution P (I = i) = P (I = i, J = j) in terms of C. (Your 
j=1 

answer will most likely be specified as a system of M + 1 equations.) Given P (I = i), how 
would you find arg max P (I = i, J = j), the most likely positions of the motif? 

i,j 

We now have an exact solution to this motif finding problem for two sequences. In the case of n 
sequences, we would have n conditional distributions, each dependent on the motif positions in 
the n − 1 other sequences. The transition matrices in part (b) would explode in size, making this 
strategy impractical. 

(e) In the two-sequence case, how could you approximate P (I = i) by simulating the Markov 
chain? Based on this intuition, outline a strategy for estimating the positions of the motif. 

Gibbs sampling is one of a family of approaches, called Markov chain Monte Carlo algorithms, 
for generating samples from a distribution given only limited information about it, such as only 
its pdf or, in the case of Gibbs sampling, only the conditionals. Gibbs sampling is particularly 
useful when the conditionals are much easier to formulate than the full joint. Although there is 
great flexibility in how you can define the conditionals, there are certain restrictions that we didn’t 
mention, which imply the existence of a solution to part (d). 

5



