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Classification

Lecture 5 September 18, 2008

Computational Biology: Genomes, Networks, Evolution



Two Different Approaches

• Generative
– Bayesian Classification and Naïve Bayes
– Example: Mitochondrial Protein Prediction

• Discriminative
– Support Vector Machines 
– Example: Tumor Classification



Bayesian Classification

We will pose the classification problem in 
probabilistic terms

Create models for how features are 
distributed for objects of different classes

We will use probability calculus to make 
classification decisions



Classifying Mitochondrial Proteins
Derive 7 features for all 

human proteins

Predict nuclear encoded 
mitochondrial genes

Maestro

Targeting signal 

Protein domains

Mass Spec

Co-expression

Homology

Induction
Motifs

First page of article removed due to copyright restrictions:
Calvo, S., et al. "Systematic Identification of Human
Mitochondrial Disease Genes Through Integrative Genomics."
Nature Genetics 38 (2006): 576-582.



Lets Look at Just One Feature

• Each object can 
be associated 
with multiple 
features

• We will look at 
the case of just 
one feature for 
now

We are going to define two key 
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The First Key Concept
Features for each class drawn from class-conditional 

probability distributions (CCPD)

P(X|Class1) P(X|Class2)

Our first goal will be to model these distributions

X



The Second Key Concept
We model prior probabilities to quantify the expected a 

priori chance of seeing a class

P(mito) = how likely is the next protein to be a mitochondrial protein before I 
see any features to help me decide

We expect ~1500 mitochondrial genes out of ~21000 total, so
P(mito)=1500/21000

P(~mito)=19500/21000

P(Class2)   &   P(Class1)



But How Do We Classify?
• So we have priors defining the a priori probability

of a class

• We also have models for the probability of a 
feature given each class

But we want the probability of the class given a feature
How do we get P(Class1|X)?

P(Class1), P(Class2)

P(X|Class1), P(X|Class2)



Bayes Rule
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evidence Bayes, Thomas (1763) An essay
towards solving a problem in the
doctrine of chances. Philosophical
Transactions of the Royal Society of
London, 53:370-418



Bayes Decision Rule
If we observe an object with feature X, how do decide if the object is 

from Class 1? 

The Bayes Decision Rule is simply choose Class1 if:
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Discriminant Function
We can create a convenient representation of the 

Bayes Decision Rule

If G(X) > 0, we classify as Class 1

( | 1) ( 1) ( | 2) ( 2)

( | 1) ( 1) 1
( | 2) ( 2)

( | 1) ( 1)( ) log 0
( | 2) ( 2)

P X Class P Class P X Class P Class

P X Class P Class
P X Class P Class

P X Class P ClassG X
P X Class P Class

>

>

= >



Stepping back
What do we have so far?

P(X|Class1), P(X|Class2)          P(Class1), P(Class2)

( | ) ( )1 1( ) log 0
( | ) ( )2 2Cla

Class Class
ss Clas

P X PG X
P sX P

= >

Given a new feature, X, we plug 
it into this equation…

…and if G(X)> 0 we classify as Class1

We have defined the two components, class-conditional 
distributions and priors

We have used Bayes Rule to create a discriminant function for 
classification from these components



Two Fundamental Tasks

• We need to estimate the needed probability 
distributions
– P(X|Mito) and P(x|~Mito)
– P(Mito) and P(~Mito)

• We need to assess the accuracy of the 
classifier
– How well does it classify new objects



The All Important Training Set

How many data points you need depends on the problem
Need to build and test your classifier

Building a classifier requires a set of labeled data points called 
the Training Set

The quality of the classifier depends on the number of training 
set data points



Getting P(X|Class) from Training Set

In general, and especially 
for continuous distributions,
this can be a complicated 

problem
Density Estimation

P(X|Class1)
How do we get this 
from these?

One Simple Approach

Divide X values into bins

And then we simply count 
frequencies

<1 1-3 3-5 5-7 >7

2/13

0

7/13

3/13

1/13

There are 13 data 
points

X



Getting Priors

1. Estimate priors by counting 
fraction of classes in training set

2. Estimate from “expert”
knowledge

3. We have no idea – use equal 
(uninformative) priors

Three general approaches

P(Class1)=13/23

P(Class2)=10/23

13 Class1 10 Class2

But sometimes fractions in 
training set are not 

representative of world

Example
P(mito)=1500/21000

P(~mito)=19500/21000

P(Class1)=P(Class2)



We Are Just About There….

We have created the class-conditional distributions and priors

P(X|Class1), P(X|Class2)          P(Class1), P(Class2)

But there is one more little complication…..

( | ) ( )1 1( ) log 0
( | ) ( )2 2Cla

Class Class
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P X PG X
P sX P

= >

And we are ready to plug these into our discriminant function



But What About Multiple Features?

• We have focused on a single 
feature for an object

• But mitochondrial protein 
prediction (for example) has 
7 features

So P(X|Class) become P(X1,X2,X3,…,X8|Class)
and our discriminant function becomes

Targeting signal 

Protein domains

Mass Spec

Co-expression

Homology

Induction
Motifs
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Distributions Over Many Features

• Assume each feature binned into 5 
possible values 

• We have 58 combinations of values we 
need to count the frequency for

• Generally will not have enough data
– We will have lots of nasty zeros

Estimating P(X1,X2,X3,…,X8|Class1) can be difficult



Naïve Bayes Classifier
We are going to make the following assumption:

All features are independent given the class

We can thus estimate individual distributions for each
feature and just multiply them together!
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Naïve Bayes Discriminant Function
Thus, with the Naïve Bayes assumption, we can  now 

rewrite, this:

As this:
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Individual Feature Distributions
Instead of a single big distribution, we have a smaller 

one for each feature (and class)

Targeting signal 

Protein domains

Mass Spec

Co-expression

Homology

Induction
Motifs

P(Target|Mito) P(Target|~Mito)

P(Domain|Mito)

P(CE|Mito)

P(Mass|Mito)

P(Homology|Mito)

P(Induc|Mito)

P(Motif|Mito)

P(Domain|~Mito)

P(CE|~Mito)

P(Mass|~Mito)

P(Homology|~Mito)

P(Induc|~Mito)

P(Motif|~Mito)

<1 1-3 3-5 5-7 >7
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Classifying A New Protein

Plug these and priors into the discriminant function

P(Xi|Mito)

P(Xi|~Mito)

(for all 8 features)

Xi

1 7
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IF G>0, we predict that the protein is from class Mito 

Targeting signal 

Protein domains

Mass Spec
Co-expression

Homology
Induction

Motifs



Maestro Results

Apply Maestro to Human Proteome

Total predictions: 1,451 proteins 
490 novel predictions

Slide Credit: S. Calvo

Courtesy of Sarah Calvo. Used with permission.



How Good is the Classifier?

The Rule
We must test our classifier on a different 
set from the training set: the labeled test 

set

The Task
We will classify each object in the test set 

and count the number of each type of 
error



Binary Classification Errors

• Sensitivity
– Fraction of all Class1 (True) that we correctly predicted at Class 1
– How good are we at finding what we are looking for

• Specificity
– Fraction of all Class 2 (False) called Class 2
– How many of the Class 2 do we filter out of our Class 1 predictions

In both cases, the higher the better

True (Mito) False (~Mito)

Predicted True TP FP

Predicted False FN TN

Sensitivity = TP/(TP+FN) Specificity = TN/(TN+FP)



Maestro Outperforms Existing Classifiers

*

Slide Credit: S. Calvo

*
(99%, 71%)

Naïve Bayes
(Maestro)

Courtesy of Sarah Calvo. Used with permission.



Support Vector Machines

Discriminative Classification



Support Vector Machines (SVMs)

Easy to select a 
line

But many lines will 
separate these 
training data

What line should 
we choose?



Support Vector Machines (SVMs)

A sensible choice 
is to select a line 
that maximizes 

the margin
between classes

m
argin

separator

m
argin

Support
Vectors



SVM Formulation
We define a vector w

normal to the separating 
line 

Assume all data satisfy 
the following:

m
argin

separator

rgin
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Y=+1
Y=-1
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b/|x|
xi•w
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An Optimization Problem

For full derivation, see Burges (1998)

Quadratic
Programming

Only some αi
are non-zero

xi with ai >0 are the support vectors
w is determined by these data points!
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data!



Using an SVM

Given a new data 
point we simply 

assign it the label:

m
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m
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Again, only dot 
product of input data!



Non-linear Classifier
• Some data not linearly separable in low dimensions
• What if we transform it to a higher dimension?

1 dimensional data
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2 dimensional data
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Noble, 2006.  NATURE BIOTECHNOLOGY 24:1565.

Kernel function



Kernel Mapping
Want a mapping from input space 

to other euclidean space

Φ(x): Rd -> Η

But Φ(X) can be a mapping to an infinite dimensional space
i.e. d points become an infinite number of points

X=(x1,x2)                      Φ(X)=(φ1,φ2,φ3,….φ∞)

Rather difficult to work with!



Kernel Mapping
Want a mapping from input space 

to other euclidean space
From previous slide, SVMs only 

depend on dot product

Here is trick: if we have a kernel function such that

We can just use K and never 
know Φ(x) explicitly!

Xi • Xj Φ(Xi) • Φ(Xj)

K(Xi,Xj) = Φ(Xi) • Φ(Xj)

Φ(X) is high dimensional
K is a scalar

Φ(x): Rd -> Η becomes



Kernels

1

2

N

1 2

K(Xi,Xj)

2

We have then done two very useful things:
1. Transformed X into a high (possibly infinite) dimensional

space (where we hope are data are separable)
2. Taken dot products in this space to create scalars

N

xi=(1,2)

1

Φ(xi) • Φ(xj) = scalar!

So the key step is to take your input data and transform it into a 
kernel matrix



Example Kernels

What K(Xi,Xj) are valid kernels?  
Answer given by Mercer’s Condition (see Burgess 1998)

Linear

Polynomial

Radial Basis Function

Sigmoid
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Step 2 – Train SVM on transformed data – get support vectors

Using (Non-Linear) SVMs
Step 1 – Transform data to Kernel Matrix K

Step 2 – Test/Classify on new samples
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Classifying Tumors with Array Data

• Primary samples:
– 38 bone marrow 

samples 
– 27 ALL, 11 AML
– obtained from acute 

leukemia patients at
the time of diagnosis;

• Independent samples:
– 34 leukemia samples 
– 24 bone marrow
– 10 peripheral blood 

samples

• Assay ~6800 Genes

Image removed due to copyright restrictions: title and 
abstract of Golub, T.R., et al. "Molecular Classification of
Cancer: Class Discovery and Class Prediction by Gene 
Expression Monitoring." Science 286 (1999): 531-537.

Figure 3b and supplementary figure 2 also removed 
from later pages.



Weighted Voting Classfication

– Choosing a set of informative genes based on 
their correlation with the class distinction

– Each informative gene casts a weighted vote for 
one of the classes

– Summing up the votes to determine the winning 
class and the prediction strength

General approach of Golub et al (1999) paper:



Results

Initial Samples
• 36 of the 38 samples as either AML or ALL.  

All 36 samples agree with clinical diagnosis
• 2 not predicted

Independent Samples
• 29 of 34 samples are strongly predicted with 

100% accuracy.
• 5 not predicted



Bringing Clustering and Classification Together

Semi-Supervised Learning

Common Scenario
• Few labeled
• Many unlabeled
• Structured data

What if we cluster first?

Then clusters can help 
us classify
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