6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

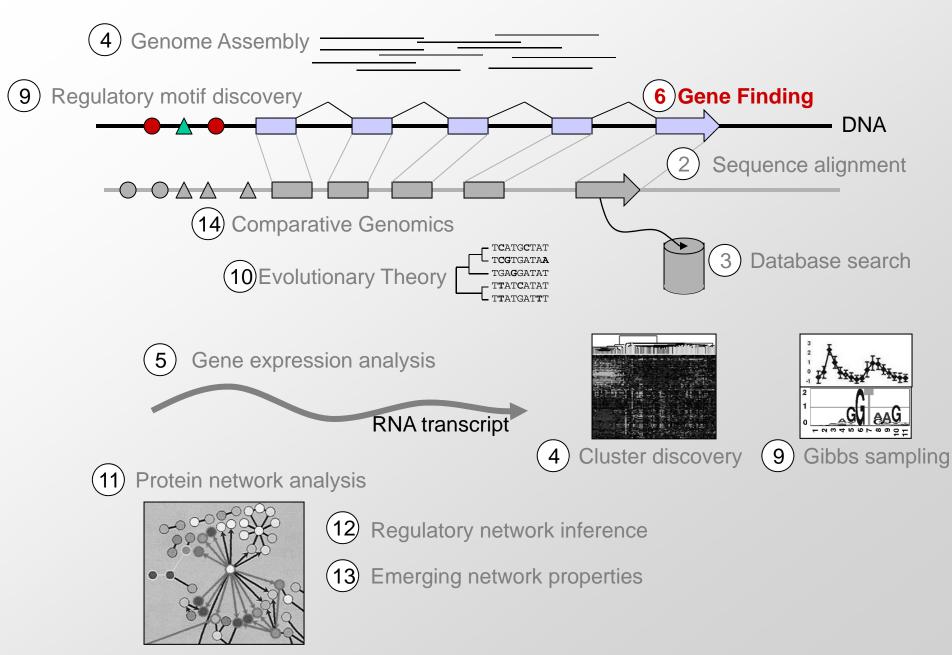
6.047/6.878 - Computational Biology: Genomes, Networks, Evolution

Modeling Biological Sequence using Hidden Markov Models

Lecture 6

Sept 23, 2008

Challenges in Computational Biology



What have we learned so far?

- String searching and counting
 - Brute-force algorithm
 - W-mer indexing
- Sequence alignment

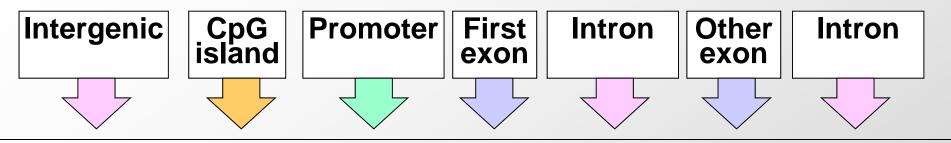
 - Global / local alignment, general gap penalties
- String comparison
 - Exact string match, semi-numerical matching
- Rapid database search
 - Exact matching: Hashing, BLAST
 - Inexact matching: neighborhood search, projections
- Problem set 1

So, you find a new piece of DNA... What do you do?

...GTACTCACCGGGTTACAGGATTATGGGTTACAGGTAACCGTT...

- Align it to things we know about
- Align it to things we don't know about
- Stare at it
 - Non-standard nucleotide composition?
 - Interesting k-mer frequencies?
 - Recurring patterns?
- Model it
 - Make some hypotheses about it
 - Build a 'generative model' to describe it
 - Find sequences of similar type

This week: Modeling biological sequences (a.k.a. What to do with a huge chunk of DNA)



TACAGGATTATGGGTTACAGGTAACCGTTGTACTCACCGGGTTACAGGATTATGGGTTACAGGTAACCGGTACTCACCGGGTTACAGGATTATGGTAACGGTACTCACCGGGTTACAGGATTGTTAC GG

- Ability to emit DNA sequences of a certain type
 - Not exact alignment to previously known gene
 - Preserving 'properties' of type, not identical sequence
- Ability to **recognize** DNA sequences of a certain type (state)
 - What (hidden) state is most likely to have generated observations
 - Find set of states and transitions that generated a long sequence
- Ability to **learn** distinguishing characteristics of each state
 - Training our generative models on large datasets
 - Learn to classify unlabelled data

Why Probabilistic Sequence Modeling?

- Biological data is noisy
- Probability provides a calculus for manipulating models
- Not limited to yes/no answers can provide "degrees of belief"
- Many common computational tools based on probabilistic models
- Our tools:

Markov Chains and Hidden Markov Models (HMMs)

Definition: Markov Chain

Definition: A Markov chain is a triplet (Q, p, A), where:

 \succ **Q** is a finite set of states. Each state corresponds to a symbol in the alphabet Σ

- > **p** is the initial state probabilities.
- > A is the state transition probabilities, denoted by a_{st} for each s, t in Q.
- > For each *s*, *t* in *Q* the transition probability is: $a_{st} = P(x_i = t | x_{i-1} = s)$ Output: The output of the model is the set of states at each instant time => the set of states are observable

Property: The probability of each symbol x_i depends only on the value of the preceding symbol x_{i-1} : $P(x_i | x_{i-1}, ..., x_1) = P(x_i | x_{i-1})$

Formula: The probability of the sequence:

 $P(x) = P(x_{L}, x_{L-1}, \dots, x_{1}) = P(x_{L} | x_{L-1}) P(x_{L-1} | x_{L-2}) \dots P(x_{2} | x_{1}) P(x_{1})$

Definitions: HMM (Hidden Markov Model)

Definition: An HMM is a 5-tuple (Q, V, p, A, E), where:

- Q is a finite set of states, |Q|=N
- V is a finite set of observation symbols per state, |V|=M
- > **p** is the initial state probabilities.
- > A is the state transition probabilities, denoted by a_{st} for each s, t in Q.

> For each s, t in Q the transition probability is: $a_{st} = P(x_i = t | x_{i-1} = s)$

 \blacktriangleright E is a probability emission matrix, $e_{sk} \equiv P(v_k \text{ at time } t | q_t = s)$

Output: Only emitted symbols are observable by the system but not the underlying random walk between states -> "hidden"

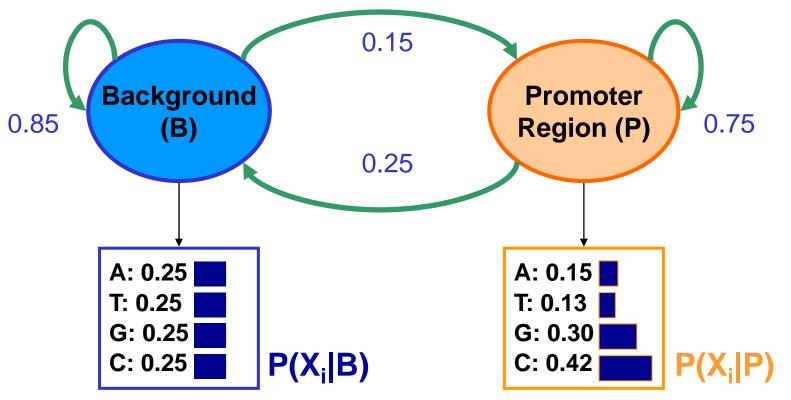
Property: Emissions and transitions are dependent on the current state only and not on the past.

The six algorithmic settings for HMMsOne pathAll paths

0	1. Scoring x, one path	2. Scoring x, all paths
Scoring	Ρ(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$
	Prob of a path, emissions	Prob of emissions, over all paths
σ	3. Viterbi decoding	4. Posterior decoding
din	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$\pi^{\wedge} = \{\pi_{i} \mid \pi_{i} = \operatorname{argmax}_{k} \Sigma_{\pi} P(\pi_{i} = k x)\}$
Decoding	Most likely path	Path containing the most likely state at any time point.
bu	5. Supervised learning, given π $\Lambda^* = \operatorname{argmax}_{\Lambda} P(x,\pi \Lambda)$	6. Unsupervised learning
earning	6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \max_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(\mathbf{x}, \pi \Lambda)$
U	Viterbi training, best path	Baum-Welch training, over all paths

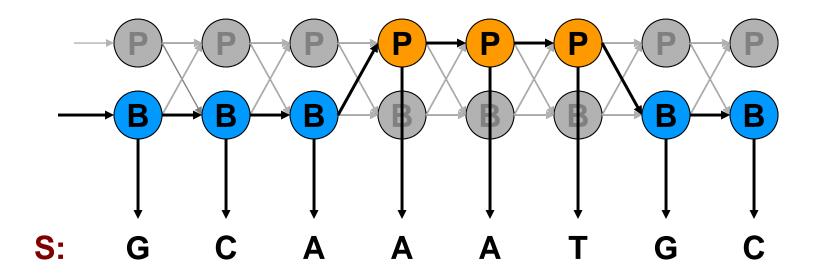
Example 1: Finding GC-rich regions

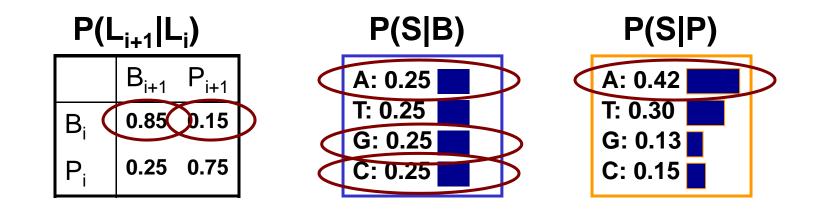
- Promoter regions frequently have higher counts of Gs and Cs
- Model genome as nucleotides drawn independently from two distributions: Background (B) and Promoters (P).
- Emission probabilities based on nucleotide composition in each.
- Transition probabilities based on relative abundance & avg. length



TAAGAATTGTGTCACACACATAAAAACCCTAAGTTAGAGGATTGAGATTGGCA GACGATTGTTCGTGATAATAAACAAGGGGGGGCATAGATCAGGCTCATATTGGC

HMM as a Generative Model





Sequence Classification

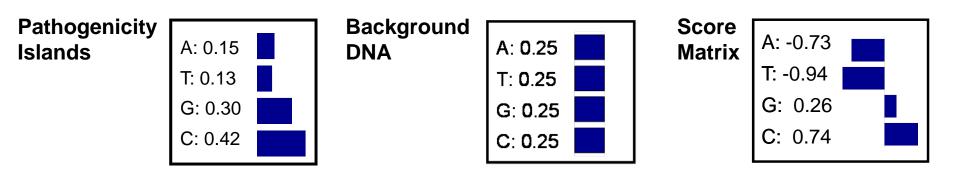
PROBLEM: Given a sequence, is it a promoter region?

- We can calculate P(S|MP), but what is a *sufficient P value*?

SOLUTION: compare to a null model and calculate log-likelihood ratio

- e.g. background DNA distribution model, B

$$Score = \log \frac{P(S \mid MP)}{P(S \mid B)}$$

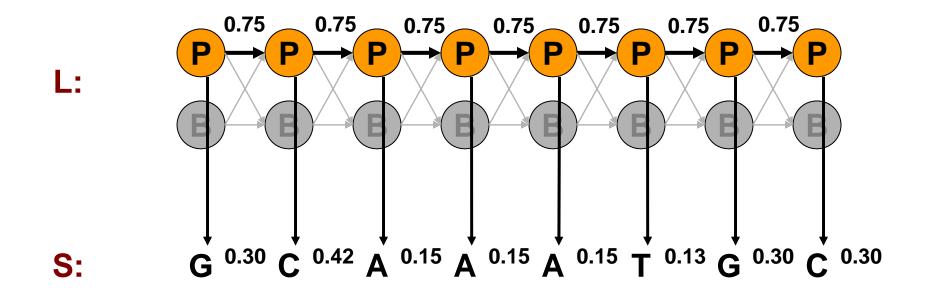


Finding GC-rich regions

- Could use the log-likelihood ratio on windows of fixed size
- Downside: have to evaluate all islands of all lengths repeatedly
- Need: a way to easily find transitions

TAAGAATTGTGTCACACACATAAAAACCCTAAGTTAGAGGATTGAGATTGGCA GACGATTGTTCGTGATAATAAACAAGGGGGGGCATAGATCAGGCTCATATTGGC

Probability of a sequence if all promoter

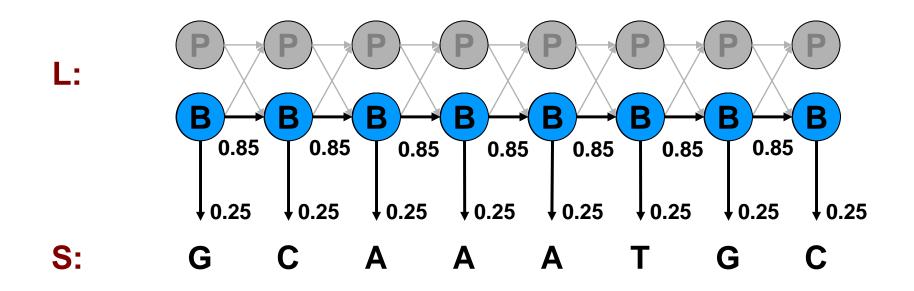


$$\begin{split} P(x,\pi) = & a_P * e_P(G) * a_{PP} * e_P(G) * a_{PP} * e_P(C) * a_{PP} * e_P(A) * a_{PP} * \dots \\ = & a_P * (0.75)^{7*} (0.15)^{3*} (0.13)^{1*} (0.30)^{2*} (0.42)^2 \\ = & 9.3 * 10^{-7} \end{split} \quad A: 0.15 \\ T: 0.13 \\ G: 0.30 \end{split}$$

C: 0.42

Why is this so small?

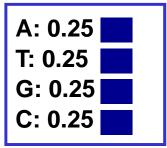
Probability of the same sequence if all background



 $P = P(G \mid B)P(B_1 \mid B_0)P(C \mid B)P(B_2 \mid B_1)P(A \mid B)P(B_3 \mid B_2)...P(C \mid B_7)$ $= (0.85)^7 \times (0.25)^8$

 $=4.9\times10^{-6}$

Compare relative probabilities: 5-fold more likely!



Probability of the same sequence if mixed



 $P = P(G \mid B)P(B_1 \mid B_0)P(C \mid B)P(B_2 \mid B_1)P(A \mid B)P(P_3 \mid B_2)...P(C \mid B_7)$ = (0.85)³ × (0.25)⁶ × (0.75)² × (0.42)² × 0.30 × 0.15 = 6.7 × 10⁻⁷

Should we try all possibilities? What is the most likely path?

The six algorithmic settings for HMMsOne pathAll paths

0	1. Scoring x, one path	2. Scoring x, all paths
Scoring	Ρ(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$
	Prob of a path, emissions	Prob of emissions, over all paths
σ	3. Viterbi decoding	4. Posterior decoding
din	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$\pi^{\wedge} = \{\pi_{i} \mid \pi_{i} = \operatorname{argmax}_{k} \Sigma_{\pi} P(\pi_{i} = k x)\}$
Decoding	Most likely path	Path containing the most likely state at any time point.
bu	5. Supervised learning, given π $\Lambda^* = \operatorname{argmax}_{\Lambda} P(x,\pi \Lambda)$	6. Unsupervised learning
earning	6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \max_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(\mathbf{x}, \pi \Lambda)$
U	Viterbi training, best path	Baum-Welch training, over all paths

3. DECODING: What was the sequence of hidden states?

- Given: Model parameters $e_i(.)$, a_{ij}
- Given: Sequence of emissions x
- Find: Sequence of hidden states π

Finding the optimal path

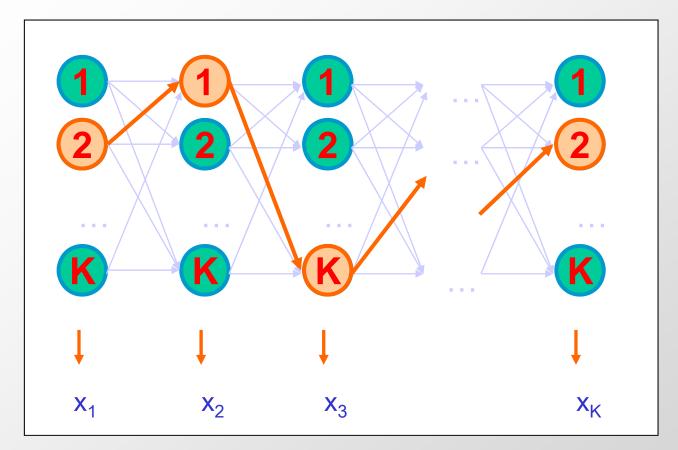
- We can now evaluate any path through hidden states, given the emitted sequences
- How do we find the best path?
- Optimal substructure! Best path through a given state is:
 - Best path to previous state
 - Best transition from previous state to this state
 - Best path to the end state

➔ Viterbi algortithm

- Define $V_k(i)$ = Probability of the most likely path through state π_i =k
- Compute $V_k(i+1)$ as a function of max_k, { $V_{k'}(i)$ }
- $V_k(i+1) = e_k(x_{i+1}) * max_j a_{jk} V_j(i)$

➔ Dynamic Programming

Finding the most likely path

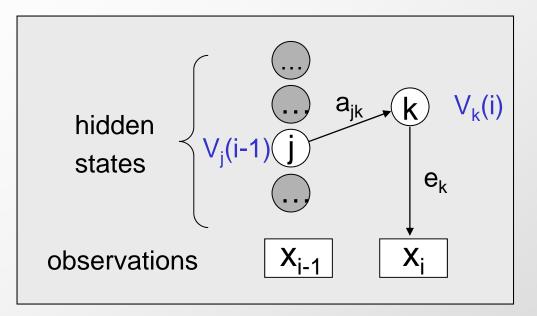


• Find path π^* that maximizes total joint probability P[x, π]

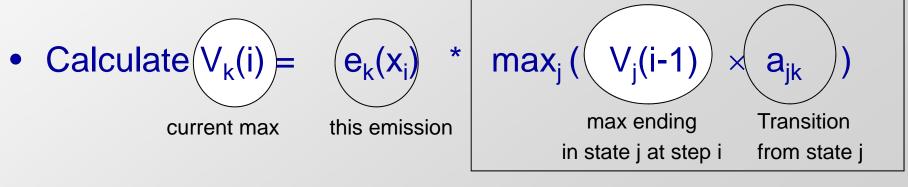
•
$$P(x,\pi) = a_{0\pi_1} * \prod_i e_{\pi_i}(x_i) \times a_{\pi_i\pi_{i+1}}$$

start emission transition

Calculate maximum $P(x,\pi)$ recursively

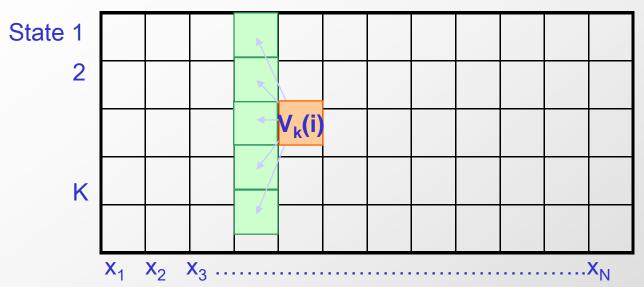


Assume we know V_i for the previous time step (i-1)



all possible previous states j

The Viterbi Algorithm



Input:
$$x = x1....xN$$

Initialization:

 $V_0(0)=1$, $V_k(0) = 0$, for all k > 0

Iteration:

 $V_k(i) = e_K(x_i) \times \max_j a_{jk} V_j(i-1)$

Termination:

 $P(x, \pi^*) = \max_k V_k(N)$

Traceback:

Follow max pointers back

Similar to aligning states to seq

In practice:

Use log scores for computation

Running time and space:

Time:O(K²N)Space:O(KN)

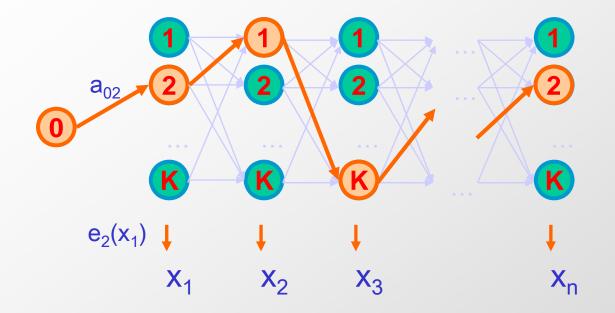
The six algorithmic settings for HMMsOne pathAll paths

0	1. Scoring x, one path	2. Scoring x, all paths
Scoring	Ρ(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$
	Prob of a path, emissions	Prob of emissions, over all paths
σ	3. Viterbi decoding	4. Posterior decoding
din	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$\pi^{\wedge} = \{\pi_{i} \mid \pi_{i} = \operatorname{argmax}_{k} \Sigma_{\pi} P(\pi_{i} = k x)\}$
Decoding	Most likely path	Path containing the most likely state at any time point.
bu	5. Supervised learning, given π $\Lambda^* = \operatorname{argmax}_{\Lambda} P(x,\pi \Lambda)$	6. Unsupervised learning
earning	6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \max_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(\mathbf{x}, \pi \Lambda)$
U	Viterbi training, best path	Baum-Welch training, over all paths

2. EVALUATION (how well does our model capture the world)

- Given: Model parameters e_i(.), a_{ii}
- Given: Sequence of emissions x
- Find: P(x|M), summed over all possible paths π

Simple: Given the model, generate some sequence x

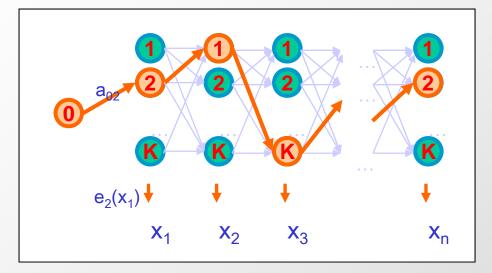


Given a HMM, we can generate a sequence of length n as follows:

- 1. Start at state π_1 according to prob $a_{0\pi 1}$
- 2. Emit letter x_1 according to prob $e_{\pi 1}(x_1)$
- 3. Go to state π_2 according to prob $a_{\pi 1 \pi 2}$
- 4. ... until emitting x_n

We have some sequence x that can be emitted by p. Can calculate its likelihood. However, in general, many different paths may emit this same sequence x. How do we find the <u>total probability</u> of generating a given x, over any path?

Complex: Given x, was it generated by the model?



Given a sequence x,

What is the probability that x was generated by the model (using any path)?

$$- P(x) = \sum_{\pi} P(x,\pi)$$

• Challenge: exponential number of paths

Calculate probability of emission over all paths

- Each path has associated probability
 - Some paths are likely, others unlikely: sum them all up
 - → Return total probability that emissions are observed, summed over all paths
 - Viterbi path is the most likely one
 - How much 'probability mass' does it contain?
- (cheap) alternative:
 - Calculate probability over maximum (Viterbi) path π^{\ast}
 - Good approximation if Viterbi has highest density
 - BUT: incorrect
- (real) solution
 - Calculate the exact sum iteratively
 - $P(x) = \sum_{\pi} P(x,\pi)$
 - Can use dynamic programming

The Forward Algorithm – derivation

Define the forward probability:

 $f_{I}(i) = P(x_{1}...x_{i}, \pi_{i} = I)$

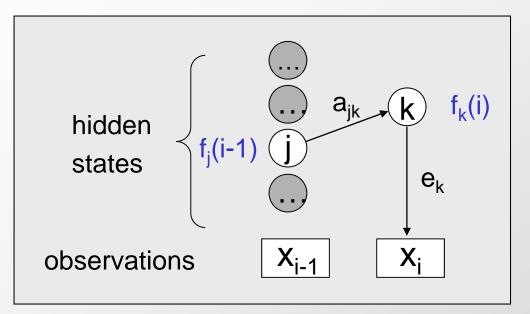
=
$$\Sigma_{\pi_1...\pi_{i-1}} P(\mathbf{x}_1...\mathbf{x}_{i-1}, \pi_1, ..., \pi_{i-2}, \pi_{i-1}, \pi_i = \mathbf{I}) e_{\mathbf{I}}(\mathbf{x}_i)$$

$$= \Sigma_{k} \sum_{\pi_{1}...\pi_{i-2}} \mathsf{P}(\mathsf{x}_{1}...\mathsf{x}_{i-1}, \pi_{1}, ..., \pi_{i-2}, \pi_{i-1} = \mathsf{k}) \quad \mathsf{a}_{kl} \, \mathsf{e}_{l}(\mathsf{x}_{i-1}, \pi_{l-1}) = \mathsf{k}_{kl} \, \mathsf{e}_{l}(\mathsf{x}_{i-1}, \pi_{l-1}, \pi_{l-1}) = \mathsf{k}_{kl} \, \mathsf{e}_{l}(\mathsf{x}_{i-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}) = \mathsf{k}_{kl} \, \mathsf{e}_{l}(\mathsf{x}_{i-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}) = \mathsf{k}_{kl} \, \mathsf{e}_{l}(\mathsf{x}_{i-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}) = \mathsf{k}_{kl} \, \mathsf{e}_{l}(\mathsf{x}_{i-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}) = \mathsf{k}_{kl} \, \mathsf{e}_{l}(\mathsf{x}_{i-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}) = \mathsf{k}_{kl} \, \mathsf{e}_{l}(\mathsf{x}_{i-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}) = \mathsf{k}_{kl} \, \mathsf{e}_{l}(\mathsf{x}_{i-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}) = \mathsf{k}_{kl} \, \mathsf{e}_{l}(\mathsf{x}_{i-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}) = \mathsf{k}_{kl} \, \mathsf{e}_{l}(\mathsf{x}_{i-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}, \pi_{l-1}) = \mathsf{k}_{kl} \, \mathsf{e}_{l}(\mathsf{x}_{i-1}, \pi_{l-1}, \pi$$

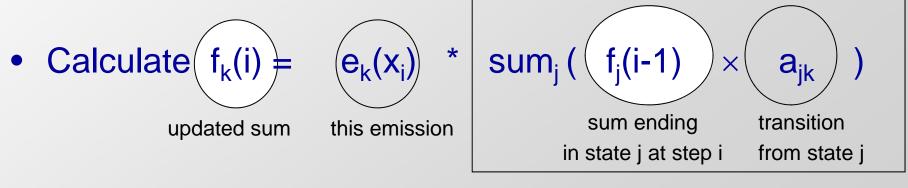
$$= \Sigma_k f_k(i-1) a_{kl} e_l(x_i)$$

 $= \mathbf{e}_{\mathsf{I}}(\mathsf{x}_{\mathsf{i}}) \Sigma_{\mathsf{k}} [\mathbf{f}_{\mathsf{k}}(\mathsf{i-1})] \mathbf{a}_{\mathsf{k}\mathsf{I}}$

Calculate total probability $\Sigma_{\pi} P(x,\pi)$ recursively

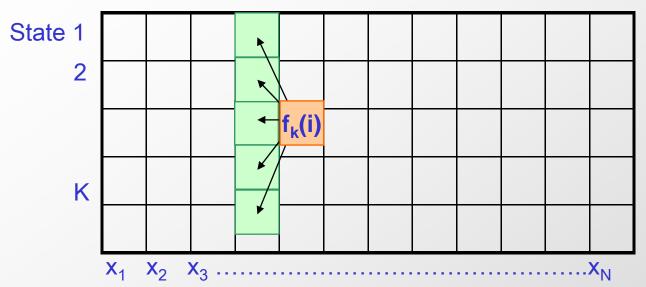


Assume we know f_i for the previous time step (i-1)



every possible previous state j

The Forward Algorithm



Input:
$$x = x1....xN$$

Initialization:

 $f_0(0)=1, f_k(0) = 0$, for all k > 0

Iteration:

 $f_k(i) = e_K(x_i) \times sum_j a_{jk} f_j(i-1)$

Termination:

 $\mathsf{P}(\mathsf{x},\,\pi^*) = \operatorname{sum}_{\mathsf{k}}\mathsf{f}_{\mathsf{k}}(\mathsf{N})$

In practice:

Sum of log scores is difficult

- \rightarrow approximate exp(1+p+q)
- \rightarrow scaling of probabilities

Running time and space:Time:O(K²N)Space:O(KN)

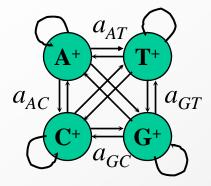
The six algorithmic settings for HMMsOne pathAll paths

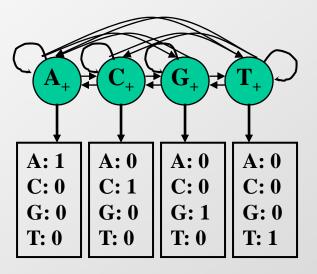
0	1. Scoring x, one path	2. Scoring x, all paths
Scoring	Ρ(x,π)	$P(x) = \sum_{\pi} P(x,\pi)$
	Prob of a path, emissions	Prob of emissions, over all paths
σ	3. Viterbi decoding	4. Posterior decoding
din	$\pi^* = \operatorname{argmax}_{\pi} P(x,\pi)$	$\pi^{\wedge} = \{\pi_{i} \mid \pi_{i} = \operatorname{argmax}_{k} \Sigma_{\pi} P(\pi_{i} = k x)\}$
Decoding	Most likely path	Path containing the most likely state at any time point.
bu	5. Supervised learning, given π $\Lambda^* = \operatorname{argmax}_{\Lambda} P(x,\pi \Lambda)$	6. Unsupervised learning
earning	6. Unsupervised learning. $\Lambda^* = \operatorname{argmax}_{\Lambda} \max_{\pi} P(x, \pi \Lambda)$	$\Lambda^* = \operatorname{argmax}_{\Lambda} \Sigma_{\pi} P(\mathbf{x}, \pi \Lambda)$
U	Viterbi training, best path	Baum-Welch training, over all paths

Introducing memory

- State, emissions, only depend on current state
- How do you count **di-nucleotide** frequencies?
 - CpG islands
 - Codon triplets
 - Di-codon frequencies
- Introducing memory to the system
 - Expanding the number of states

Example 2: CpG islands: incorporating memory



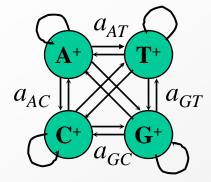


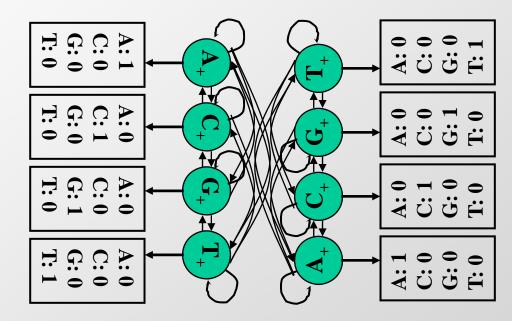
- Markov Chain
 - Q: states
 - p: initial state probabilities
 - A: transition probabilities

• HMM

- Q: states
- V: observations
- p: initial state probabilities
- A: transition probabilities
- E: emission probabilities

Counting nucleotide transitions: Markov/HMM





- Markov Chain
 - Q: states
 - p: initial state probabilities
 - A: transition probabilities

• HMM

- Q: states
- V: observations
- p: initial state probabilities
- A: transition probabilities
- E: emission probabilities

What have we learned ?

- Modeling sequential data
 - Recognize a type of sequence, genomic, oral, verbal, visual, etc...
- Definitions
 - Markov Chains
 - Hidden Markov Models (HMMs)
- Simple examples
 - Recognizing GC-rich regions.
 - Recognizing CpG dinucleotides
- Our first computations
 - Running the model: know model \rightarrow generate sequence of a 'type'
 - Evaluation: know model, emissions, states \rightarrow p?
 - Viterbi: know model, emissions \rightarrow find optimal path
 - Forward: know model, emissions \rightarrow total p over all paths
- Next time:
 - Posterior decoding
 - Supervised learning
 - Unsupervised learning: Baum-Welch, Viterbi training