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Lecture 18: CRFs for Computational Gene Prediction 
Lecturer: James E. Galagan 

Overview of gene prediction 

One of the fundamental problems in computational biology is to identify genes in very long 
genome sequences. As we know, DNA is a sequence of nucleotide molecules (a.k.a. bases) which 
encode instructions for generation of proteins. However, not all of these bases are responsible 
for protein generation. As an example shown in the 4th slide on page 1 of [2], in the eukaryotic 
gene structure, only exons contribute to protein manufacturing. Other segments, like intron, 
intergenic, start, stop, are not directly responsible for protein production. Therefore our task 
in gene prediction (or genome annotation) is, given a DNA sequence (X) with zero or more 
genes and some “evidence” associated with the given DNA sequence, determine a labeling 
(Y ) that assigns to each base a label according to the functionality of that part of 
the gene. For example, the labels can be intergenic, start, exon, acceptor, intron, donor, stop, 
etc. 

How do we do gene prediction? It turns out that we can make use of several types of 
evidence. For example, some gene parts are associated with short fixed sequences, which are 
called signals. However, since such short sequences appear randomly everywhere in the DNA 
sequence, we cannot solely use these signals for gene prediction purposes. Other evidence relies 
on the tendency of certain genomic regions to have specific base composition (a.k.a. content 
measures). For example, there are usually multiple codons for each amino acid and not all 
codons are used equally often, which gives rise to different ratios of nucleotides in coding 
sequences. Apart from this evidence, which stem from DNA properties, there is also evidence 
like direct experimental evidence, BLAST hits, HMMer hits, etc. The main challenge of 
gene prediction algorithms is how to take advantage of all these types of evidence 
together. 

The most popular method so far of combining evidence is to use Hidden Markov Models 
(HMMs). In an HMM, we model the labels as hidden states and assume that the hidden states 
constitute a Markov chain. We assign an emission probability to every (x ∈ X, y ∈ Y ) to 
model the probability of observing base x when the hidden state is y. This model is also called 
a generative model, since a convenient way to think of HMMs is to imagine that there is a 
machine with a button. By pushing the button, one can generate a genome sequence according 
to some probability distribution. In gene prediction, we use maximum-likelihood training to 
compute state transition probabilities and emission probabilities, and then find the most likely 
hidden state sequence Y yn. Note that HMMs in fact model a joint distribution over = y1 · · · 
bases and hidden states, namely P (X, Y ) = P (Labels, Sequence). However, in gene prediction 
problems, we are given X and only need to predict Y . In other words, we want the conditional 
probability distribution, P (Y |X). There are also some so-called generalized hidden Markov 
models (GHMMs). In these models, each state may emit more than one symbol, emission 
probabilities may be modeled by any arbitrary probabilistic models, and sometimes the feature 
lengths are explicitly modeled according to experimental data (instead of restricted to geometric 
distributions as required by HMMs). As an example, the 2nd slide on page 2 of [2] demonstrates 
Genscan, a software based on GHMMs. The 3rd slide shows a comparison of performances (in 
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terms of both Sensitivity and Specificity measures) of four different gene prediction softwares 
based on GHMMs. One can see that there is still room for improvement, and this is mostly 
due to the limitations of HMMs. 

2 Why Conditional Random Fields (CRFs) 

There are certain intrinsic limitations to the HMM approach. First, as we mentioned ear­
lier, the most natural distribution to model is the conditional distribution instead of the joint 
distribution. HMMs expend unnecessary effort to model the joint distribution P (X, Y ) = 
P (Y |X) ∗ P (X), when our real goal is just P (Y |X). What’s even worse is that during the 
learning process we might have to trade the accuracy in modeling P (Y |X) in order to model 
P (X) more accurately, and this leads to less accurate gene prediction. 

Another limitation is that since HMMs are directed graphical models, each component of 
HMMs has strict probabilistic semantics. Therefore it is hard for HMMs to model dependent 
evidence. However as we know in gene prediction, there are many dependent evidence that need 
to be incorporated. For example, HMMer protein domain predictions come from models based 
on known protein sequences and these sequences are the same proteins searched by BLAST. 
Therefore evidence coming from HMMer hits and BLAST hits are by no means independent. 
In fact, dependence is the rule for most evidence available for gene prediction. One major 
drawback of HMMs is that it is very cumbersome to model arbitrary dependent evidence of the 
input sequences. One may try to modify HMMs by adding more hidden states to model such 
dependency, but this approach usually leads to training and inference that is computationally 
intractable and/or suffers from data sparsity problems. 

One common strategy is to simply assume independence (naive Bayesian assumption) among 
the conditional probabilities. In other words, we would make the assumption that 

P (X|YiYi−1 . . . Y1) = P (X|Yi) 

, but this assumption is typically a false one in practice. 
All these difficulties with HMMs motivated people to propose an alternative approach known 

as discriminative models to model the conditional distribution P (Y |X) directly. Contrary to 
the directed graphical model of HMMs, this is an undirected graphical model (i.e. Markov 
random field). In the undirected graphical models, edges between nodes no longer bear proba­
bilistic semantics. Instead, an edge simply represent some “compatibility function” (the f eature 
functions) between the values of the random variables. These feature functions are then glob­
ally normalized to assign a probability to each graph configuration. Because of this change in 
semantics, we can simply add edges between label yj and any set of bases in X without creat­
ing additional dependencies among nodes in Y . We can also model the conditional probability 
P (yj |X) without considering the dependencies among X. 

A particular instance of the undirected graphical model is called the conditional random 
field model (CRF) 1. In this model, a set of unobserved variables are conditioned on a set of 
observed variables which are called conditional random fields. Our new CRF models have the 
following three desirable characteristics: 

1Like HMMs, the CRF models were also borrowed from the field of natural language processing (NPL) by 
computational biologists. 
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1. There are efficient learning algorithms to compute the parameters of the model and effi­
cient inference algorithms to predict hidden states; 

2. It is easy to incorporate diverse evidence; 

3. We can build on the best existing HMMs for gene calling. 

A linear chain CRF is shown in the last slide on page 4 of [2]. This is a very simple 
CRF model which enables us to do efficient training and inference. In this model, the input 
data (DNA sequence, BLAST hits, ESTs, etc) is denoted collectively by X. The hidden state 
labels (exon, intron, etc) are denoted by Y . We arrange all the labels in a linear chain and 
assign a set of feature functions to every clique {yi−1, yi, X} and denote them by fj (yi−1, yi, X), 
where j = 1, . . . , J . We also assign a weight λj to each feature function and finally define the 
conditional probability to be 

J N� 
⎧⎨


⎫⎬
1 
P (Y X) = λj fj (yi, yi−1, X)exp
|
 ,


Z(X)
 ⎩
 ⎭

j=1 i=1 

where the normalization factor Z(X) is given by
⎧⎨

⎫⎬
J N

Y j=1 i=1 

� 
( ) = Z X
 λj fj (yi, yi−1, X)exp
 .
⎩
 ⎭


Doing so guarantees that

P (Y |X) = 1 

Y 

as required by the semantic of probabilities. 
The basic idea underling this formality is that feature functions {fj } return real values on 

pairs of labels and input data that we think are important for determining P (Y |X). We may 
not know how the conditional probability is changed by this feature function or what is its 
dependence on other evidence. However, we model this dependency by weights {λj } and learn 
these weights to maximize the likelihood of training data. Finally we normalize the probability 
to ensure that P (Y |X) sums to one over all possible Y ’s. The advantage of this formality is 
that it captures the conjunction property between labels and input data directly without resort 
to P (X). 

There are three fundamental steps in applying CRF models to gene prediction: Design, 
Inference and Learning. In the following sections we will look at these three steps in details. 

CRF Design 

Selecting feature functions is the core issue in CRF applications. Technically speaking, feature 
functions can be arbitrary functions that return real values for some pair of labels (yi, yi−1) 
and the input X. However we want to select feature functions that capture constraints or 
conjunctions of label pairs (yi, yi−1) and the input X that we think are important for P (Y |X). 
Commonly-used feature functions include: 
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•	 indicator function where fj (yi, yi−1, X) = 1 for certain clique {yi, yi−1, X} and 0 other­
wise; 

•	 sum, product, etc over labels and input data; 

•	 some probability distribution over cliques {yi, yi−1, X}, and so on. 

As an interesting example, we can see two feature functions in the slides 4 and 5 on page 5 of [2]. 
We are in the situation that both BLAST and HMMer evidence suggest labeling yi as exon. This 
will be hard to handle in HMMs but is very easy in CRF model: we simply include a BLAST 
feature function and a HMMer feature function and assign two weights λBLAST and λHMMer for 
these two feature functions. Thus, we do not need to worry about the dependence between the 
BLAST and HMMer evidence. There is no requirement that evidence represented by feature 
functions be independent. The underlying reason for this is we do not model P (X) in CRF 
models. All we care about is which evidence contributes to the conditional probability P (Y |X). 
The weights will determine the (relative) extent to which each set of evidence contributes and 
interacts. 

In practice, there may be thousands or even millions of arbitrary indicator feature functions 
to incorporate into our CRF model. A naive approach is try all of them via brute force search, 
which is obviously impractical. However, a much better strategy is to take advantage of all 
the research on HMMs during the past decade by using the best HMM as our starting point. 
That is, we start with feature functions derived from the best HMM-based gene prediction 
algorithms. To see why this strategy works, one may look at slides 3, 4, 5 and 6 on page 6 
of [2]. As it is shown there, HMM is simply a special case of CRF with all the feature function 
weights λ = 1 and each feature function taking the special form 

fHMM(yi, yi−1, xi) = log(P (yi|yi−1) · P (xi|yi)) 
= log(P (yi|yi−1)) + log(P (xi|yi)) 
= fHMM-Transition + fHMM-Emission, 

where we define fHMM-Transition as 

fHMM-Transition(yi, yi−1, xi) = log(P (yi|yi−1)) 

and define fHMM-Emission by 

fHMM-Emission(yi, yi−1, xi) = log(P (xi|yi)). 

Thus, we see that HMMs are just a very special form of the CRF model. As a result, adding 
new evidence to existing HMM becomes simple because we can add arbitrary feature functions 
to the CRF-version of our HMM and then learn the weights of these new feature functions 
empirically. These weights will capture the impact of the incorporating new features into our 
original HMM model. 

HMMs and linear chain CRF explore the same family of conditional distributions P (Y |X), 
and we can convert between HMMs and linear chain CRFs. In fact, HMMs and CRFs form 
a generative-discriminative pair as demonstrated in slide 3 on page 7 of [2]. An important 
reason for adopting linear chain CRF is because the underlying probability distribution is a 
factoring distribution, reducing the computation complexity of probability distributions from 
exponential time to linear time. Another reason is efficient inference capabilities, as we see in 
the next section. 
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CRF Inference 

Recall that our ultimate goal in gene prediction is, when given a sequence of DNA and some 
evidence (denote them collectively by X), to select the best labeling Y . As with HMMs, the 
most natural choice for “best labeling” is simple the most probable labeling given by 

J N
⎧⎨ ⎩


⎧⎨

⎫⎬


⎫⎬
1

arg max


Y 
P (Y
 X) = arg max |

Y 
λj fj (yi, yi−1, X)exp
 .


Z(X)
 ⎩
 ⎭
⎭

j=1 i=1 

But of course we can not afford to score every possible Y . The chain structure of the linear 
chain CRF plays a crucial role in this respect since it guarantees the sub-optimality structure 
of P (Y |X), just the same as in HMMs we have seen before. Therefore, following the notation 
we used in the Viterbi algorithm, let vk(i) be the probability of the most likely path passing 
through i and ending at state k, then we have the recurrent relation 

J
⎧⎨


⎞⎛ ⎫⎬

vk(i) = max ⎩


v�(i − 1) ·
exp
⎝
 λj fj (k, �, X)⎠
⎭

.


j=1 

This recurrent relation enables us to compute the most probable labeling by dynamic program­
ming, as the Viterbi algorithm for HMMs. 

In fact to see the relation between CRFs and HMMs more explicitly, as shown in slides 2, 
3 and 4 on page 8 of [2], we can define the quantity ΨHMM for HMMs by 

ΨHMM (yi, yi−1, X) = P (yi|yi−1)P (xi|yi), 

and define an analogous quantity for generic CRFs by ⎫⎬ 
⎧⎨ 

ΨCRF (yi, yi−1, X) = exp ⎩

λj fj (yi, yi−1, xi)⎭


.

j 

Thus, we can rewrite all HMM equations (Viterbi, Forward, Backward, etc) in terms of ΨHMM , 
and then replace ΨHMM with ΨCRF , and get a set of analogous equations for CRF models. 

CRF Learning 

Suppose we are given an independent and identically distributed (i.i.d.) training set {(X(k), Y (k))}, 
which is usually a set of manually curated genes sequences for which all nucleotides are labeled. 
Define
 ⎧⎨


⎫⎬
J N

j=1 i=1 

1 
Zλ(X)

Pλ(Y |X) = λj fj (yi, yi−1, X)exp
 ,
⎩
 ⎭


where
 ⎧⎨

⎫⎬


Zλ(X) = λj fj (yi, yi−1, X) 
J N

Y j=1 i=1 
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⎩
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�KWe would like to chose λ = (λ1, . . . , λJ ) to maximize L(λ) = k=1 Pλ(Y (k)|X(k)), that is, 
the product of the conditional probabilities of all the training data. For numerical stability 
convenience (to avoid computational underflow), we instead maximize �λ = log L(λ), the log-
likelihood of the data 

λj i i−1

δλ 
we have 

K J N K� 
(k) (k) (k) (k)( ) = ( ) log ( )� λ f ,X Z X−y , yj λ . 

k=1 k=1 

As one can show, ( ) is concave and therefore is guaranteed to have a global maximum. The� λ
δ�(λ)global maximum is obtained at = 0. As we see from a homework problem, at the maximum 

K N K N

� 

j=1 i=1 

�(k) �(k)(k)
, y

(k) 
, X(k)) = i , X(k))Pmodel(Y �|X(k)).fj (y fj (y , y
i−1 i i−1 

k i=1 k i=1 Y � 

Note that the lefthand side of the above equation is the actual count in the training data while 
the righthand side corresponds to the expected count under the CRF modeled distribution. 
This nice feature guarantees that, using maximum likelihood training, the characteristics of the 
training data must also hold in our CRF model. 

However, the feature functions are usually given in “blackbox” forms and in general are not 
invertible. Therefore we have no way to find the global maximum assignment of weights in 
analytical closed forms. We can in stead rely on a gradient search algorithm outlined below. 

Gradient Search Algorithm for Computing λ 

1 Define forward/backward variables similar to HMMs 

2 Set weights λ arbitrarily 

3 Compute Z(X) using forward/backward algorithms 

4 Compute δ�(λ)/δλi using Z(X) and forward/backward algorithms 

5 Update each parameter by gradient search using δ�(λ)/δλi (quasi-
Newton method) 

6 Go to step 3 until convergence to global maximum 

CRF Applications to Gene Prediction 

To summarize, in order to apply CRFs in gene prediction, we first design the feature functions 
on label pairs {yi, yj } and X. 
by 

Then we use training data set to select the weights λ. Finally,
⎧⎨

⎫⎬
⎭


,

J N

j=1 i=1 

1 
P (Y X) = λj fj (yi, yi−1, X)exp
|


Z(X)
 ⎩


we can use the selected feature functions and computed weights to find the most probable 
labeling Y for a given input sequence X. 
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On page 9 of [2], we find a brief introduction to Conrad, a gene predictor based on CRF. One 
can see that, when predicting on C. neoformans chr 9, Conrad outperforms the best previous 
predictor Twinscan. 
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