#### 6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.047/6.878 Computational Biology: Genomes, Networks, Evolution

### Introduction to Bayesian Networks

### Overview

- We have looked at a number of graphical representations of probability distributions
  - DAG example: HMM
  - Undirected graph example: CRF
- Today we will look at a very general graphical model representation – Bayesian Networks
- One application modeling gene expression
- Aviv Regev guest lecture an extension of this basic idea

### **Probabilistic Reconstruction**



- Expression data gives us information about what genes tend to be expressed with others
- In probability terms, information about the joint distribution over gene states X:

 $P(X)=P(X_1, X_2, X_3, X_4, ..., X_m)$ 

Can we model this joint distribution?

### **Bayesian Networks**



• Directed graph encoding joint distribution variables X

 $\mathsf{P}(\mathsf{X}) = \mathsf{P}(\mathsf{X}1, \mathsf{X}2, \mathsf{X}3, \dots, \mathsf{X}\mathsf{N})$ 

- Learning approaches
- Inference algorithms
- Captures information about *dependency structure* of P(X)

### Example 1 – Icy Roads



Assume we learn that Watson has crashed Given this causal network, one might fear Holmes has crashed too. Why?

### Example 1 – Icy Roads



Now imagine we have learned that roads are not icy We would no longer have an increased fear that Holmes has crashed

### **Conditional Independence**



If we know nothing about I, W and H are dependent If we know I, W and H are conditionally independent

### **Conditional Independency**

• Independence of 2 random variables

$$X \perp Y \Leftrightarrow P(X,Y) = P(X)P(Y)$$

• Conditional independence given a third

$$X \perp Y \mid Z \Leftrightarrow P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$
  
but  $P(X, Y) \neq P(X)P(Y)$  necessarily

### Example 2 – Rain/Sprinkler



Holmes discovers his house is wet. Could be rain or his sprinkler.

### Example 2 – Rain/Sprinkler



### **Explaining Away**



Initially we had two explanations for Holmes' wet grass. But once we had more evidence for R, this explained away H and thus no reason for increase in S

### **Conditional Dependence**



### **Graph Semantics**

#### Three basic building blocks



Each implies a particular independence relationship

### Chain/Linear

#### **Conditional Independence**



## Diverging

#### **Conditional Independence**



### Converging

#### **Conditional Dependence - Explaining Away**



### **Graph Semantics**

#### Three basic building blocks



### **D-Separation**

#### Three semantics combine in concept of d-separation

- **Definition :** Two nodes A and B are **dseparated** (or **blocked**) if for every path *p* between A and B there is a node V such that either
- 1. The connection is serial or diverging and V is known
- 2. The connection is converging and V and all of its descendants are unknown

If A and B are not d-separated, they are dconnected



### Equivalence of Networks

Two structures are equivalent if they represent same independence relationship - they encode the same space of probability distributions

#### Example



Will return to this when we consider causal vs probabilistic networks

### **Bayesian Networks**

A Bayesian network (BN) for  $\mathcal{X} = \{X_1, X_2, X_3, ..., X_n\}$ consists of:

- A network structure S
  - Directed acyclic graph (DAG)
  - Nodes => random variables  $\mathcal{X}$
  - Encodes graph independence sematics
- Set of probability distributions  $\ensuremath{\mathcal{P}}$ 
  - Conditional Probability Distribution (CPD)
  - Local distributions for X

### **Example Bayesian Network**



#### $P(X) = P(R)P(S \mid R)P(W \mid R, S)P(H \mid R, S, W)$

### **BN** Probability Distribution

# Only need distributions over nodes and their parents

$$P(X) = \prod_{i=1}^{n} P(X_i | X_1, ..., X_{i-1})$$

$$=\prod_{i=1}^{n} P(X_i | pa(X_i))$$

### BNs are Compact Descriptions of P(X)

Independencies allow us to *factorize* distribution



#### Example

- Assume 2 states per node

$$P(X) = P(X_1)P(X_2|X_1)P(X_3|X_2,X_1)$$
  

$$P(X_4|X_3,X_2,X_1)P(X5|X_4,X_3,X_2,X_1)$$
  

$$\Rightarrow 2+4+8+16+32 = 62 \text{ entries}$$

$$P(X) = \prod_{i=1}^{n} P(X_i | pa(X_i))$$
  
= P(X1)P(X2|X1)P(X3|X1)  
P(X4|X2)P(X5|X3)  
 $\Rightarrow 2+4+4+4=18$  entries

### **Recall from HMM/CRF Lecture**



### CPDs

#### Discrete



| R | S | н | P(H R,S) |
|---|---|---|----------|
| 0 | 0 | 1 | 0.1      |
| 0 | 0 | 0 | 0.9      |
| 0 | 1 | 1 | 0.8      |
| 0 | 1 | 0 | 0.2      |
| 1 | 0 | 1 | 0.9      |
| 1 | 0 | 0 | 0.1      |
| 1 | 1 | 1 | 0.1      |
| 1 | 1 | 0 | 0.9      |

#### Continuous

$$P(X | Y_1, ..., Y_N) = N\left(a_o + \sum_{i=1}^N a_i Y_i, \sigma^2\right)$$

### **Bayesian Networks for Inference**

### **Observational inference**

- Observe values (evidence on) of a set of nodes, want to predict state of other nodes
- Exact Inference
  - Junction Tree Algorithm
- Approximate Inference
  - Variational approaches, Monte Carlo sampling



| P <sub>0</sub> (R) |     |  |
|--------------------|-----|--|
| R=y                | R=n |  |
| 0.2                | 0.8 |  |

| P <sub>0</sub> (S) |     |  |
|--------------------|-----|--|
| S=y                | S=n |  |
| 0.1                | 0.9 |  |

 $P_0(W|R)$ 

|     | R=y | R=n |
|-----|-----|-----|
| W=y | 1   | 0.2 |
| W=n | 0   | 0.8 |

 $P_0(H|R,S)$ 

| 011 7 |     |         |
|-------|-----|---------|
|       | R=y | R=n     |
| S=y   | 1,0 | 0.9,0.1 |
| S=n   | 0,0 | 0,1     |



We define two clusters: -WR, RHS

The key idea: the clusters only communicate through R

If they agree on R, all is good



We will find it easier to work on this representation:





| P <sub>0</sub> (S) |     |  |
|--------------------|-----|--|
| S=y                | S=n |  |
| 0.1                | 0.9 |  |

 $P_0(W|R)$ 

We then need P(WR) and P(RHS):

P(WR) =P(R)P(W|R) P(RHS)=P(R)P(S)P(H|R,S)

| • 0(•••••• |     |     |
|------------|-----|-----|
|            | R=y | R=n |
| W=y        | 1   | 0.2 |
| W=n        | 0   | 0.8 |

 $P_0(H|R,S)$ 

| 1 <sub>0</sub> (11)(,C) |     |         |  |
|-------------------------|-----|---------|--|
|                         | R=y | R=n     |  |
| S=y                     | 1,0 | 0.9,0.1 |  |
| S=n                     | 0,0 | 0,1     |  |

We will find it easier to work on this representation:



We then need P(WR) and P(RHS):

P(WR) =P(R)P(W|R) P(RHS)=P(R)P(S)P(H|R,S) 
 P<sub>0</sub>(W,R)

 R=y
 R=n

 W=y
 0.2
 0.16

 W=n
 0
 0.64

P<sub>0</sub>(R,H,S)

| - 0(,,-) |        |             |
|----------|--------|-------------|
|          | R=y    | R=n         |
| S=y      | 0.02,0 | 0.072,0.008 |
| S=n      | 0.18,0 | 0,0.72      |





Note that by marginalizing out W from  $P_0(W,R)$  we get

 $P_0(W)=(0.36,0.64)$ 

This is our initial belief in Watsons grass being (wet,not wet)

 $P_0(W,R)$ 





|     | R=y    | R=n         |
|-----|--------|-------------|
| S=y | 0.02,0 | 0.072,0.008 |
| S=n | 0.18,0 | 0,0.72      |



Now we observe H=y

We need to do three things:

- 1. Update RHS with this info
- 2. Calculate a new  $P_1(R)$
- 3. Transmit  $P_1(R)$  to update WR

P<sub>0</sub>(W,R)

|     | R=y | R=n  |  |
|-----|-----|------|--|
| W=y | 0.2 | 0.16 |  |
| W=n | 0   | 0.64 |  |

P<sub>0</sub>(R,H,S)

|     | R=y    | R=n         |
|-----|--------|-------------|
| S=y | 0.02,0 | 0.072,0.008 |
| S=n | 0.18,0 | 0,0.72      |



Updating RHS with H=y

We can simply

 Zero out all entries in RHS where H=n P<sub>0</sub>(W,R)

| <b>.</b> |     |      |
|----------|-----|------|
|          | R=y | R=n  |
| W=y      | 0.2 | 0.16 |
| W=n      | 0   | 0.64 |







Updating RHS with H=y

We can simply

- Zero out all entries in RHS where H=n
- But you can see that this changes P(R) from the perspective of RHS

 $P_0(W,R)$ 

|     | R=y | R=n  |
|-----|-----|------|
| W=y | 0.2 | 0.16 |
| W=n | 0   | 0.64 |

| P <sub>1</sub> (R,H,S) |                 |                 |  |
|------------------------|-----------------|-----------------|--|
|                        | R=y             | R=n             |  |
| S=y                    | <b>0.074</b> ,0 | <b>0.264</b> ,0 |  |
| S=n                    | <b>0.662</b> ,0 | 0,0             |  |
|                        |                 |                 |  |



2. Calculate new P<sub>1</sub>(R)

Marginalize out H,S from RHS for:

 $P_1(R) = (0.736, 0.264)$ 

Note also

 $P_1(S) = (0.339, 0.661)$  $P_0(S) = (0.1, 0.9)$   $P_0(W,R)$ 

|     | R=y | R=n  |
|-----|-----|------|
| W=y | 0.2 | 0.16 |
| W=n | 0   | 0.64 |



|     | R=y     | R=n     |
|-----|---------|---------|
| S=y | 0.074,0 | 0.264,0 |
| S=n | 0.662,0 | 0,0     |



### 2. Transmit P<sub>1</sub>(R) to update WR

 P<sub>0</sub>(W,R)

 R=y
 R=n

 W=y
 0.2
 0.16

 W=n
 0
 0.64

#### P<sub>1</sub>(R,H,S)

|     | R=y     | R=n     |
|-----|---------|---------|
| S=y | 0.074,0 | 0.264,0 |
| S=n | 0.662,0 | 0,0     |

 $P_{1}(W,R) = P(W|R)P_{1}(R)$  $= P_{0}(W,R)\frac{P_{1}(R)}{P_{0}(R)}$ 



### 2. Transmit P<sub>1</sub>(R) to update WR

 P1(W,R)

 R=y
 R=n

 W=y
 0.736
 0.052

 W=n
 0
 0.211

#### P<sub>1</sub>(R,H,S)

|     | R=y     | R=n     |
|-----|---------|---------|
| S=y | 0.074,0 | 0.264,0 |
| S=n | 0.662,0 | 0,0     |

 $P_{1}(W,R) = P(W|R)P_{1}(R)$  $= P_{0}(W,R)\frac{P_{1}(R)}{P_{0}(R)}$ 



2. Transmit P<sub>1</sub>(R) to update WR

 $P_{1}(W,R) = P(W|R)P_{1}(R)$ 

 $= P_0(W,R) \frac{P_1(R)}{P_0(R)}$ 



| P <sub>1</sub> (R, | H,S) |
|--------------------|------|
|--------------------|------|

|     | R=y     | R=n     |
|-----|---------|---------|
| S=y | 0.074,0 | 0.264,0 |
| S=n | 0.662,0 | 0,0     |



2. Transmit P<sub>1</sub>(R) to update WR





Now we observe W=y

- 1. Update WR with this info
- 2. Calculate a new P<sub>2</sub>(R)
- 3. Transmit P<sub>2</sub>(R) to update WR

**P**₁(**W**,**R**)

|     | -     |       |
|-----|-------|-------|
|     | R=y   | R=n   |
| W=y | 0.736 | 0.052 |
| W=n | 0     | 0.211 |

#### P<sub>1</sub>(R,H,S)

|     | R=y     | R=n     |
|-----|---------|---------|
| S=y | 0.074,0 | 0.264,0 |
| S=n | 0.662,0 | 0,0     |



 $P_2(S=y)=0.161$  $P_1(S=y)=0.339$  $P_0(S=y)=0.1$ 



- R is almost certain
- We have explained away H=y
- S goes low again

| F2(K,H,S) |                 |                 |
|-----------|-----------------|-----------------|
|           | R=y             | R=n             |
| S=y       | <b>0.094</b> ,0 | <b>0.067</b> ,0 |
| S=n       | <b>0.839</b> ,0 | 0,0             |

D /D H C)

### Message Passing in Junction Trees



- State of separator  ${\cal S}$  is information shared between  ${\cal X}$  and  ${\cal Y}$
- When  ${\mathcal Y}$  is updated, it sends a message to  ${\mathcal X}$
- Message has information to update  ${\mathcal X}$  to agree with  ${\mathcal Y}$  on state of  ${\mathcal S}$

### Message Passing in Junction Trees



- A node can send one message to a neighbor, only after receiving all messages from each other neighbor
- When messages have been passed both ways along a link, it is consistent
- Passing continues until all links are consistent

# **HUGIN Algorithm**

# A simple algorithm for coordinated message passing in junction trees

- Select one node, V, as root
- Call CollectEvidence(V):
  - Ask all neighbors of V to send message to V.
  - If not possible, recursively pass message to all neighbors but V
- Call DistributeEvidence(V):
  - Send message to all neighbors of V
  - Recursively send message to all neighbors but V

## **BN to Junction Tree**



A topic by itself. In summary:

- Moral Graph undirected graph with links between all parents of all nodes
- Triangulate add links so all cycles>3 have cord
- Cliques become nodes of Junction Tree

### **Recall from HMM/CRF Lecture**



## Applications



Measure some gene expression – predict rest

## Latent Variables



## Latent Variables



## Latent Variables



## **Observation vs Intervention**

- Arrows not necessarily causal
  - BN models probability and correlation between variables
- For applications so far, we observe evidence and want to know states of other nodes most likely to go with observation
- What about *interventions*?

## Example – Sprinkler



- If we observe the Sprinkler on
- Holmes grass more likely wet
- And more likely summer
- But what if we force sprinkler on

Intervention – cut arrows from parents

## Causal vs Probabilistic



- This depends on getting the arrows correct!
- Flipping all arrows does not change independence relationships
- But changes causality for interventions

## Learning Bayesian Networks

Given a set of observations D (i.e. expression data set) on X, we want to find:

1. A network structure  $\mathcal{S}$ 

2. Parameters,  $\Theta$ , for probability distributions on each node, given S

**Relatively Easy** 

# Learning $\Theta$

 Given S, we can choose maximum likelihood parameter Θ

$$\widehat{\theta} = \arg\max_{\theta} P(D \mid \theta, S) = \prod_{i=1}^{n} P(X_i \mid pa(X_i), \theta)$$

We can also choose to include prior information
 P(Θ) in a bayesian approach

$$P(\theta \mid S, D) = P(S, D \mid \theta) P(\theta)$$
$$\theta_{bayes} = \int \theta P(\theta \mid S, D) d\theta$$

## Learning Bayesian Networks

Given a set of observations D (i.e. expression data set) on X, we want to find:

1. A network structure  $\mathcal{S}$ 



2. Parameters,  $\Theta$ , for probability distributions on each node, given S

## Learning ${\cal S}$

### Find optimal structure $\mathcal{S}$ given D

$$P(S \mid D) \propto P(D \mid S)P(S)$$
$$P(D \mid S) = \int P(D \mid \theta, S)P(\theta \mid S)d\theta$$

In special circumstances, integral analytically tractable (e.g. no missing data, multinomial, dirichlet priors)

# Learning S – Heuristic Search

- Compute P(S|D) for all networks S
- Select S\* that maximizes P(S|D)

**Problem 1:** number of S grows super-exponentially with number of nodes – no exhaustive search, use hill climbing, etc..

**Problem 2:** Sparse data and overfitting



## Model Averaging

 Rather than select only one model as result of search, we can draw many samples from P(M|D) and model average

$$P(E_{xy} \mid D) = \sum_{samples} P(Exy \mid D, S)P(S \mid D)$$
$$= \sum_{samples} 1_{xy}(S)P(S \mid D)$$

How do we sample....?

## Sampling Models - MCMC

Markov Chain Monte Carlo Method

Sample from 
$$P(S \mid D) = \frac{P(D \mid S_s)P(S_k)}{\sum_k P(D \mid S_s)P(S_k)}$$

Direct approach intractable due to partition function

### MCMC

- Propose Given S<sub>old</sub>, propose new S<sub>new</sub> with probability Q(S<sub>new</sub>|S<sub>old</sub>)
- Accept/Reject Accept S<sub>new</sub> as sample with

$$p = \min\left\{1, \frac{P(D \mid S_{new})P(S_{new})}{P(D \mid S_{old})P(S_{old})} \times \frac{Q(S_{old} \mid S_{new})}{Q(S_{new} \mid S_{old})}\right\}$$