6.047 / 6.878 Computational Biology: Genomes, Networks, Evolution Fall 2008

For information about citing these materials or our Terms of Use, visit:<http://ocw.mit.edu/terms>.

6.047/6.878 Computational Biology: Genomes, Networks, Evolution

Introduction to Bayesian **Networks**

Overview

- We have looked at a number of graphical representations of probability distributions
	- –DAG example: HMM
	- –Undirected graph example: CRF
- Today we will look at a very general graphical model representation – Bayesian Networks
- One application modeling gene expression
- Aviv Regev guest lecture an extension of this basic idea

Probabilistic Reconstruction

- Expression data gives us information about what genes tend to be expressed with others
- In probability terms, information about the joint distribution over gene states X:

P(X)=P(X 1,X 2,X 3,X 4,…,X m)

Can we model this joint distribution?

Bayesian Networks

• Directed graph encoding joint distribution variables X

 $P(X) = P(X1, X2, X3, \ldots, XN)$

- Learning approaches
- Inference algorithms
- Captures information about *dependency structure* of P(X)

Example 1 – Icy Roads

Assume we learn that Watson has crashedGiven this causal network, one might fear Holmes has crashed too. Why?

Example 1 – Icy Roads

Now imagine we have learned that roads are not icy We would no longer have an increased fear that Holmes has crashed

Conditional Independence

If we know nothing about I, W and H are dependent If we know I, W and H are conditionally independent

Conditional Independency

• Independence of 2 random variables

$$
X \perp Y \Leftrightarrow P(X, Y) = P(X)P(Y)
$$

• *Conditional* independence given a third

$$
X \perp Y \mid Z \Leftrightarrow P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)
$$

but $P(X, Y) \neq P(X)P(Y)$ necessarily

Example 2 – Rain/Sprinkler

Holmes discovers his house is wet. Could be rain or his sprinkler.

Example 2 – Rain/Sprinkler

Explaining Away

Initially we had two explanations for Holmes' wet grass. But once we had more evidence for R, this *explained away* **H and thus no reason for increase in S**

Conditional Dependence

Graph Semantics

Three basic building blocks

Each implies a particular independence relationship

Chain/Linear

Conditional Independence

Diverging

Conditional Independence

Converging

Conditional Dependence - Explaining Away

Graph Semantics

Three basic building blocks

D-Separation

Three semantics combine in concept of d-separation

- **Definition :** Two nodes A and B are **dseparated** (or **blocked**) if for every path *p* between A and B there is a node V such that either
- 1. The connection is serial or diverging and V is known
- 2. The connection is converging and V *and all of its descendants* are unknown

If A and B are not d-separated, they are dconnected

Equivalence of Networks

Two structures are equivalent if they represent same independence relationship - they encode the same space of probability distributions

Example

Will return to this when we consider causal vs probabilistic networks

Bayesian Networks

A Bayesian network (BN) for $\mathcal{X} = \{X_1, X_2, X_3, \ldots, X_n\}$ consists of:

- A network structure S
	- –Directed acyclic graph (DAG)
	- Nodes => random variables $\mathcal X$
	- and the state of the *Encodes graph independence sematics*
- $\bullet\;$ Set of probability distributions ${\cal P}$
	- **Links of the Common** Conditional Probability Distribution (CPD)
	- Local distributions for X

Example Bayesian Network

$P(X) = P(R)P(S | R)P(W | R, S)P(H | R, S, W)$

BN Probability Distribution

Only need distributions over nodes and their parents

$$
P(X) = \prod_{i=1}^{n} P(X_i | X_1, ..., X_{i-1})
$$

$$
=\prod_{i=1}^n P(X_i | pa(X_i))
$$

BNs are Compact Descriptions of P(X)

Independencies allow us to *factorize* distribution

Example

- Assume 2 states per node
- $P(X) = P(X_1)P(X_2|X_1)P(X_3|X_2, X_1)$ $P(X_4 | X_3, X_2, X_1)P(X5 | X_4, X_3, X_2, X_1)$ \Rightarrow 2 + 4 + 8 + 16 + 32 = 62 entries

$$
P(X) = \prod_{i=1}^{n} P(X_i | pa(X_i))
$$

= P(X1)P(X2|X1)P(X3|X1)
P(X4|X2)P(X5|X3)

$$
\Rightarrow 2 + 4 + 4 + 4 + 4 = 18 \text{ entries}
$$

Recall from HMM/CRF Lecture

CPDs

Discrete

Continuous

$$
P(X | Y_1, ..., Y_N) = N\left(a_o + \sum_{i=1}^{N} a_i Y_i, \sigma^2\right)
$$

Bayesian Networks for Inference

Observational inference

- Observe values (evidence on) of a set of nodes, want to predict state of other nodes
- Exact Inference
	- – Junction Tree Algorithm
		-
- Approximate Inference
	- – Variational approaches, Monte Carlo sampling

P 0(W|R)

P 0(H|R,S)

We define two clusters:-WR, RHS

The key idea: the clusters only communicate through R

If they agree on R, all is good

We will find it easier to work on thisrepresentation:

P0(W|R)

We then need P(WR) and P(RHS):

P(WR) =P(R)P(W|R) P(RHS) =P(R)P(S)P(H|R,S)

P0(H|R,S)

We will find it easier to work on thisrepresentation:

$$
\begin{array}{c|c}\n & \mathbf{P_0(R)} \\
\hline\n\text{R=y} & \text{R=n} \\
\hline\n0.2 & 0.8\n\end{array}
$$

We then need P(WR) and P(RHS):

 $R=y$ | $R=n$ $W=v$ 0.2 0.16 $W=n$ 00.64

 $R=y$ $R=n$

 $0.18,0$ 0,0.72

 $S=y$ 0.02,0 0.072,0.008

P 0(R,H,S)

 $S=n$

P 0(W,R)

P(WR) =P(R)P(W|R) P(RHS) =P(R)P(S)P(H|R,S)

Note that by marginalizing out W from P 0(W,R) we get

P 0(W)=(0.36,0.64)

This is our initial belief in Watsons grass being (wet,not wet)

Now we observe H=y

We need to do three things:

- **1. Update RHS with this info**
- **2. Calculate a new** $P_1(R)$
- **3. Transmit P₁(R) to update WR**

P 0(W,R)

P0(R,H,S)

Updating RHS with H=y

We can simply

- **Zero out all entries in RHS where H=n**

Updating RHS with H=y

We can simply

-

- - **Zero out all entries in RHS where H=n**
- **But you can see that** *this changes P(R) from the perspective of RHS*

2. Calculate new P₁(R)

Marginalize out H,S from RHS for:

 $P_1(R) = (0.736, 0.264)$

Note also

P1(S) =(0.339,0.661) P 0(S) =(0.1,0.9)

2. Transmit P₁(R) to update WR

 $R=y$ | $R=n$ $W = v$ 0.2 0.16 $W=n$ Ω 0.64 **P 0(W,R)**

P1(R,H,S)

 $P_0(W,R)$ $\frac{11}{D}$ $P_1(W,R)=P(W|R)P_1(R)$ 0 $=$ P₀(W,R) $\frac{P_1(R)}{P_2(R)}$ $\frac{1}{P_0(R)}$

2. Transmit P₁(R) to update WR

 $R=y$ | $R=n$ W=y **0.736 0.052** $W=n$ **0 0.211 P1(W,R)**

P1(R,H,S)

 $P_0(W,R)$ $\frac{11}{D}$ $P_1(W,R)=P(W|R)P_1(R)$ 0 $=$ P₀(W,R) $\frac{P_1(R)}{P_2(R)}$ $\frac{1}{P_0(R)}$

2. Transmit P₁(R) to update WR

 $P_1(W,R)=P(W|R)P_1(R)$

 $P_0(W,R)$ $\frac{11}{R}$

0

2. Transmit P₁(R) to update WR

Now we observe W=y

- **1. Update WR with this info**
- **2. Calculate a new P 2(R)**
- **3. Transmit P 2(R) to update WR**

P1(W,R)

	$R = v$	$R=n$
W=v	0.736	0.052
W=n		0.211

P 2(S=y)=0.161 P1(S=y)=0.339 P 0(S=y)=0.1

- **- R is almost certain**
- **- We have** *explained away* **H=y**
- **- S goes low again**

Message Passing in Junction Trees

- State of separator S is information shared between ${\cal X}$ and ${\cal Y}$
- $\bullet~$ When ${\mathcal Y}$ is updated, it sends a message to ${\mathcal X}$
- Message has information to update $\mathcal X$ to agree with $\mathcal Y$ on state of $\mathcal S$

Message Passing in Junction Trees

- A node can send one message to a neighbor, only after receiving all messages from each other neighbor
- When messages have been passed both ways along a link, it is consistent
- Passing continues until all links are consistent

HUGIN Algorithm

A simple algorithm for coordinated message passing in junction trees

- Select one node, V, as root
- Call CollectEvidence(V):
	- Ask all neighbors of V to send message to V.
	- If not possible, recursively pass message to all neighbors but V
- Call DistributeEvidence(V):
	- Send message to all neighbors of V
	- Recursively send message to all neighbors but V

BN to Junction Tree

A topic by itself. In summary:

- Moral Graph undirected graph with links between all parents of all nodes
- Triangulate add links so all cycles>3 have cord
- Cliques become nodes of Junction Tree

Recall from HMM/CRF Lecture

Applications

Measure some gene expression – predict rest

Latent Variables

Latent Variables

Latent Variables

Observation vs Intervention

- Arrows not necessarily causal
	- and the state of the state BN models probability and correlation between variables
- For applications so far, we *observe* evidence and want to know states of other nodes most likely to go with observation
- What about *interventions*?

Example – Sprinkler

- If we **observe** the Sprinkler on
- Holmes grass more likely wet
- And more likely summer
- But what if we **force** sprinkler on

Intervention – cut arrows from parents

Causal vs Probabilistic

- This depends on getting the arrows correct!
- Flipping all arrows does not change independence relationships
- But changes causality for interventions

Learning Bayesian Networks

Given a set of observations D (i.e. expression data set) on X, we want to find:

1. A network structure ${\cal S}$

2. Parameters, Θ, for probability distributions on each node, given ${\cal S}$

Relatively Easy

Learning Θ

• Given S, we can choose maximum likelihood parameter Θ

$$
\widehat{\theta} = \arg \max_{\theta} P(D | \theta, S) = \prod_{i=1}^{n} P(X_i | pa(X_i), \theta)
$$

• We can also choose to include prior information P(Θ) in a bayesian approach

$$
P(\theta | S, D) = P(S, D | \theta) P(\theta)
$$

$$
\theta_{\text{bayes}} = \int \theta P(\theta | S, D) d\theta
$$

Learning Bayesian Networks

Given a set of observations D (i.e. expression data set) on X, we want to find:

1. A network structure ${\cal S}$

2. Parameters, Θ, for probability distributions on each node, given ${\cal S}$

Learning S

Find optimal structure S given D

$$
P(S | D) \propto P(D | S) P(S)
$$

$$
P(D | S) = \int P(D | \theta, S) P(\theta | S) d\theta
$$

In special circumstances, integral analytically tractable (e.g. no missing data, multinomial, dirichlet priors)

Learning S – Heuristic Search

- Compute P(S|D) for all networks S
- Select S* that maximizes P(S|D)

Problem 1: number of S grows super-exponentially with number of nodes – no exhaustive search, use hill climbing, etc..

Problem 2: Sparse data and overfitting

Model Averaging

• Rather than select only one model as result of search, we can draw many samples from P(M|D) and model average

$$
P(E_{xy} | D) = \sum_{\text{samples}} P(EXy | D, S) P(S | D)
$$

=
$$
\sum_{\text{samples}} 1_{xy}(S) P(S | D)
$$

How do we sample....?

Sampling Models - MCMC

Markov Chain Monte Carlo Method

Sample from
$$
P(S | D) = \frac{P(D | S_s)P(S_k)}{\sum_k P(D | S_s)P(S_k)}
$$

Direct approach intractable due to partition function

MCMC

- Propose Given S_{old}, propose new S_{new} with **probability Q(Snew|Sold)**
- •• Accept/Reject – Accept S_{new} as sample with

$$
p = \min\left\{1, \frac{P(D \mid S_{new})P(S_{new})}{P(D \mid S_{old})P(S_{old})} \times \frac{Q(S_{old} \mid S_{new})}{Q(S_{new} \mid S_{old})}\right\}
$$