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Overview

• We have looked at a number of graphical 
representations of probability distributions
– DAG example: HMM
– Undirected graph example: CRF

• Today we will look at a very general graphical 
model representation – Bayesian Networks

• One application – modeling gene expression
• Aviv Regev guest lecture – an extension of 

this basic idea



Probabilistic Reconstruction

• Expression data gives us 
information about what genes 
tend to be expressed with others

• In probability terms, information 
about the joint distribution over 
gene states X:

P(X)=P(X1,X2,X3,X4,…,Xm)

Can we model this joint 
distribution?



Bayesian Networks

• Directed graph encoding 
joint distribution variables X

P(X) = P(X1,X2,X3,…,XN)

• Learning approaches
• Inference algorithms

• Captures information about 
dependency structure of 
P(X)



Example 1 – Icy Roads

I
Icy Roads

W
Watson
Crashes

H
Holmes
Crashes

Causal
impact

Assume we learn that Watson has crashed
Given this causal network, one might fear Holmes has 

crashed too.  Why?



Example 1 – Icy Roads

I
Icy Roads

W
Watson
Crashes

H
Holmes
Crashes

Now imagine we have learned that roads are not icy
We would no longer have an increased fear that Holmes has 

crashed



Conditional Independence

I
Icy Roads

W
Watson
Crashes

H
Holmes
Crashes

If we know nothing about I, W and H are dependent
If we know I, W and H are conditionally independent

No Info on I
We Know I



Conditional Independency

• Independence of 2 random variables

• Conditional independence given a third

( , ) ( ) ( )X Y P X Y P X P Y⊥ ⇔ =

| ( , | ) ( | ) ( | )
but   ( , ) ( ) ( )  necessarily

X Y Z P X Y Z P X Z P Y Z
P X Y P X P Y

⊥ ⇔ =
≠



Example 2 – Rain/Sprinkler

R
Rain

W
Watson

Wet

H
Holmes

Wet

S
Sprinkler

Holmes discovers his house is wet.
Could be rain or his sprinkler.



R
Rain

W
Watson

Wet

H
Holmes

Wet

S
Sprinkler

Now imagine Holmes sees Watsons grass is wet
Now we conclude it was probably rain 

And probably not his sprinkler

Example 2 – Rain/Sprinkler



Explaining Away

R
Rain

W
Watson

Wet

H
Holmes

Wet

S
Sprinkler

Initially we had two explanations for Holmes’ wet grass.
But once we had more evidence for R, this explained away H 

and thus no reason for increase in S



Conditional Dependence

R
Rain

W
Watson

Wet

H
Holmes

Wet

S
Sprinkler

If we don’t know H, R and S are …
independent

But if we know H, R and S are conditionally dependent

Don’t know H

Know H



Graph Semantics

Y

X Z

Y

X Z

Y

X Z

Serial Diverging Converging

Each implies a particular independence relationship

Three basic building blocks



Chain/Linear

|X Z⊥ ∅

|X Z Y⊥

YX Z

YX Z

Conditional Independence



Diverging

|X Z⊥ ∅

|X Z Y⊥

YX Z

YX Z

Conditional Independence



Converging

|X Z⊥ ∅

|X Z Y⊥

YX Z

YX Z

Conditional Dependence - Explaining Away



Graph Semantics

Y

X Z

Converging

Three basic building blocks

A B ….



D-Separation

Definition : Two nodes A and B are d-
separated (or blocked) if for every 
path p between A and B there is a 
node V such that either

1. The connection is serial or diverging
and V is known

2. The connection is converging and V 
and all of its descendants are 
unknown

If A and B are not d-separated, they are d-
connected

Three semantics combine in concept of d-separation



Equivalence of Networks
Two structures are equivalent if they represent 
same independence relationship - they encode 

the same space of probability distributions

Will return to this when we consider causal vs probabilistic networks

Y

X Z

Y

X Z

Y

X Z

Example



Bayesian Networks

• A network structure S
– Directed acyclic graph (DAG)
– Nodes => random variables X
– Encodes graph independence sematics

• Set of probability distributions P
– Conditional Probability Distribution (CPD)
– Local distributions for X

A Bayesian network (BN) for X = {X1, X2, X3,…, Xn} 
consists of:



Example Bayesian Network

R
Rain

W
Watson

Wet

H
Holmes

Wet

S
Sprinkler

( ) ( ) ( | ) ( | , ) ( | , , )
( ) ( ) ( | ) ( | , )

P X P R P S R P W R S P H R S W
P R P S P W R P H S R

=
=



BN Probability Distribution

Only need distributions over nodes and their 
parents

1 1
1

1

( ) ( ,..., )

( ( ))

n

i i
i

n

i i
i

P X P X X X

P X pa X

−
=

=

=

=

∏

∏



BNs are Compact Descriptions of P(X)
Independencies allow us to factorize distribution

Example
- Assume 2 states per node

X4

X2 X3

X1

X5

1 2 1 3 2 1

4 3 2 1 4 3 2 1

1

( ) P(X )P(X |X )P(X |X ,X )
             P(X |X ,X ,X )P(X5|X ,X ,X ,X )

        2 4 8 16 32 62 entries

( ) ( ( ))

         P(X1)P(X2|X1)P(X3|X1)
              P(X4|X2)P(X5|X3)
       2 4

n

i i
i

P X

P X P X pa X
=

=

⇒ + + + + =

=

=

⇒ + +

∏

4 4 4 18 entries+ + =



Recall from HMM/CRF Lecture

( ) ( )
all nodes v

i i-1 i i

P(X,Y) = P(v|parents(v))

= P Y | Y P X |Y

∏

∏

Y2 Y3Y1

X2 X3X1

Y4

X4

Y2 Y3Y1 Y4

X2

Directed Graph Semantics

Factorization

Potential Functions over Cliques
(conditioned on X)

Markov Random Field

Factorization

( )
all nodes v

i i-1

P(Y|X) = P(v|clique(v),X)

= P Y | Y ,X

∏

∏



CPDs

R

W H

S
R S H P(H|R,S)

0 0 1 0.1

0 0 0 0.9

0 1 1 0.8

0 1 0 0.2

1 0 1 0.9

1 0 0 0.1

1 1 1 0.1

1 1 0 0.9

Discrete

Continuous



Bayesian Networks for Inference

• Observe values (evidence on) of a set 
of nodes, want to predict state of other 
nodes

• Exact Inference
– Junction Tree Algorithm

• Approximate Inference
– Variational approaches, Monte Carlo 

sampling

Observational inference



Walking Through an Example

R

W H

S

R=y R=n
W=y 1 0.2
W=n 0 0.8

P0(W|R)

R=y R=n
S=y 1,0 0.9,0.1
S=n 0,0 0,1

P0(H|R,S)

S=y S=n
0.1 0.9

P0(S)

R=y R=n
0.2 0.8

P0(R)



Walking Through an Example

R

W H

S

WR RHS

We define two clusters:
-WR, RHS

The key idea: the 
clusters only 

communicate through R

If they agree on R, all is 
good

R



Walking Through an Example

R=y R=n
W=y 1 0.2
W=n 0 0.8

P0(W|R)

R=y R=n
S=y 1,0 0.9,0.1
S=n 0,0 0,1

P0(H|R,S)

S=y S=n
0.1 0.9

P0(S)

R=y R=n
0.2 0.8

P0(R)

WR RHSR

We will find it easier to work on this
representation:

We then need P(WR) and P(RHS):

P(WR)  =P(R)P(W|R)
P(RHS) =P(R)P(S)P(H|R,S)



Walking Through an Example

R=y R=n
W=y 0.2 0.16
W=n 0 0.64

P0(W,R)

R=y R=n
S=y 0.02,0 0.072,0.008
S=n 0.18,0 0,0.72

P0(R,H,S)

R=y R=n
0.2 0.8

P0(R)

WR RHSR

We will find it easier to work on this
representation:

We then need P(WR) and P(RHS):

P(WR)  =P(R)P(W|R)
P(RHS) =P(R)P(S)P(H|R,S)



Walking Through an Example

R=y R=n
W=y 0.2 0.16
W=n 0 0.64

P0(W,R)

R=y R=n
S=y 0.02,0 0.072,0.008
S=n 0.18,0 0,0.72

P0(R,H,S)

R=y R=n
0.2 0.8

P0(R)

WR RHSR

Note that by marginalizing out W 
from P0(W,R) we get 

P0(W)=(0.36,0.64)

This is our initial belief in Watsons 
grass being (wet,not wet)



Walking Through an Example

R=y R=n
W=y 0.2 0.16
W=n 0 0.64

P0(W,R)

R=y R=n
S=y 0.02,0 0.072,0.008
S=n 0.18,0 0,0.72

P0(R,H,S)

R=y R=n
0.2 0.8

P0(R)

WR RHSR

Now we observe H=y

We need to do three things:

1. Update RHS with this info
2. Calculate a new P1(R)
3. Transmit P1(R) to update WR

H=y



Walking Through an Example

R=y R=n
W=y 0.2 0.16
W=n 0 0.64

P0(W,R)

R=y R=n
S=y 0.02,0 0.072,0
S=n 0.18,0 0,0

P0(R,H,S)

R=y R=n
0.2 0.8

P0(R)

WR RHSR

Updating RHS with H=y

We can simply 
- Zero out all entries in RHS where 

H=n 

H=y



Walking Through an Example

R=y R=n
W=y 0.2 0.16
W=n 0 0.64

P0(W,R)

R=y R=n
S=y 0.074,0 0.264,0
S=n 0.662,0 0,0

P1(R,H,S)

R=y R=n
0.2 0.8

P0(R)

WR RHSR

Updating RHS with H=y

We can simply 
- Zero out all entries in RHS where 

H=n 
- Re-normalizeBut you can see that 

this changes P(R) 
from the perspective 

of RHS

H=y



Walking Through an Example

R=y R=n
W=y 0.2 0.16
W=n 0 0.64

P0(W,R)

R=y R=n
0.2 0.8

P0(R)

WR RHSR

2. Calculate new P1(R)

Marginalize out H,S from RHS for:

P1(R) = (0.736,0.264) 

Note also

P1(S) =(0.339,0.661)
P0(S) =(0.1,0.9)

R=y R=n
S=y 0.074,0 0.264,0
S=n 0.662,0 0,0

P1(R,H,S)

H=y



Walking Through an Example
R=y R=n

0.736 0.264

P1(R)

WR RHSR

2. Transmit P1(R) to update WR

P1(R)

1

1 1

0
0

P (W,R)=P(W|R)P (R)
P (R)=P (W,R
P

)
(R)

R=y R=n
W=y 0.2 0.16
W=n 0 0.64

P0(W,R)

R=y R=n
S=y 0.074,0 0.264,0
S=n 0.662,0 0,0

P1(R,H,S)

H=y



Walking Through an Example
R=y R=n

0.736 0.264

P1(R)

WR RHSR

2. Transmit P1(R) to update WR

P1(R)

1

1 1

0
0

P (W,R)=P(W|R)P (R)
P (R)=P (W,R
P

)
(R)

R=y R=n
W=y 0.736 0.052
W=n 0 0.211

P1(W,R)

R=y R=n
S=y 0.074,0 0.264,0
S=n 0.662,0 0,0

P1(R,H,S)

H=y



Walking Through an Example
R=y R=n

0.736 0.264

P1(R)

WR RHSR

2. Transmit P1(R) to update WR

P1(R)

1

1 1

0
0

P (W,R)=P(W|R)P (R)
P (R)=P (W,R
P

)
(R)

R=y R=n
W=y 0.736 0.052
W=n 0 0.211

P1(W,R)

R=y R=n
S=y 0.074,0 0.264,0
S=n 0.662,0 0,0

P1(R,H,S)

P1(R)/P0(R) H=y



Walking Through an Example
R=y R=n

0.736 0.264

P1(R)

WR RHSR

2. Transmit P1(R) to update WR

P1(R)

1

0

1 1

0

1

0

P (R)
P (W,R)=P(W|R)P (R)

=P (W,R)

P
P (R)

0.788(W=y)=
P (W=y)=0.360

R=y R=n
W=y 0.736 0.052
W=n 0 0.211

P1(W,R)

R=y R=n
S=y 0.074,0 0.264,0
S=n 0.662,0 0,0

P1(R,H,S)

P1(R)/P0(R) H=y



Walking Through an Example
R=y R=n

0.736 0.264

P1(R)

WR RHSR

P2(R)/P1(R)

R=y R=n
W=y 0.736 0.052
W=n 0 0.211

P1(W,R)

R=y R=n
S=y 0.074,0 0.264,0
S=n 0.662,0 0,0

P1(R,H,S)

P2(R) H=yW=y

Now we observe W=y

1. Update WR with this info
2. Calculate a new P2(R)
3. Transmit P2(R) to update WR



Walking Through an Example
R=y R=n
0.93 0.07

P2(R)

WR RHSR

P2(R)/P1(R)

R=y R=n
W=y 0.93 0.07
W=n 0 0

P2(W,R)

R=y R=n
S=y 0.094,0 0.067,0
S=n 0.839,0 0,0

P2(R,H,S)

P2(R) H=yW=y

P2(S=y)=0.161
P1(S=y)=0.339
P0(S=y)=0.1

- R is almost certain
- We have explained away H=y
- S goes low again



P*(S)/P(S)

Message Passing in Junction Trees

X YS

e

Separator

• State of separator S is information shared 
between X and Y

• When Y is updated, it sends a message to X
• Message has information to update X to 

agree with Y on state of S



4 4

4

5

5

1

2

1 1

1
3

2

Message Passing in Junction Trees

• A node can send one message to a neighbor, only 
after receiving all messages from each other neighbor

• When messages have been passed both ways along a 
link, it is consistent

• Passing continues until all links are consistent

A B C

F E D

G H
e

e

34



HUGIN Algorithm

• Select one node, V, as root

• Call CollectEvidence(V): 
– Ask all neighbors of V to send message to V.  
– If not possible, recursively pass message to all neighbors but V

• Call DistributeEvidence(V): 
– Send message to all neighbors of V
– Recursively send message to all neighbors but V

A simple algorithm for coordinated message passing 
in junction trees



BN to Junction Tree

A topic by itself. In summary:

• Moral Graph – undirected 
graph with links between 
all parents of all nodes

• Triangulate – add links so 
all cycles>3 have cord

• Cliques become nodes of 
Junction Tree

R

W H

S

WR RHSR



Recall from HMM/CRF Lecture

( ) ( )
all nodes v

i i-1 i i

P(X,Y) = P(v|parents(v))

= P Y | Y P X |Y

∏

∏

Y2 Y3Y1

X2 X3X1

Y4

X4

Y2 Y3Y1 Y4

X2

Directed Graph Semantics

Factorization

Potential Functions over Cliques
(conditioned on X)

Markov Random Field

Factorization

( )
all nodes v

i i-1

P(Y|X) = P(v|clique(v),X)

= P Y | Y ,X

∏

∏



Applications

G1 G2 G4

G10 G7 G6

G9 G8

G3
G5

Measure some gene expression – predict rest



Latent Variables

G1 G2 G4

G10 G7 G6

G9 G8

G3
G5

Drugs

D1

D4

D2

D3



Latent Variables

G1 G2 G4

G10 G7 G6

G9 G8

G3
G5

Drugs

D1

D4

D2

D3

Env

pH

O2



Latent Variables

G1 G2 G4

G10 G7 G6

G9 G8

G3
G5

Drugs

D1

D4

D2

D3

Env

pH

O2

Metabolites M1 M2 M3 M4



Observation vs Intervention

• Arrows not necessarily causal
– BN models probability and correlation 

between variables
• For applications so far, we observe

evidence and want to know states of 
other nodes most likely to go with 
observation

• What about interventions? 



Example – Sprinkler

• If we observe the 
Sprinkler on

• Holmes grass 
more likely wet

• And more likely 
summer 

• But what if we 
force sprinkler on

Rain

W H

Sprinkler

Season

Intervention – cut arrows from parents



Causal vs Probabilistic

• This depends on 
getting the arrows 
correct!

• Flipping all arrows 
does not change 
independence 
relationships

• But changes causality 
for interventions

X ZY

X ZY



Learning Bayesian Networks

1. A network structure S

2. Parameters, Θ, for probability 
distributions on each node, given S

Given a set of observations D (i.e. expression 
data set) on X, we want to find:

Relatively Easy



Learning Θ
• Given S, we can choose maximum likelihood 

parameter Θ

• We can also choose to include prior information 
P(Θ) in a bayesian approach

1

arg max ( | , ) ( ( ) , )
n

i i
i

P D S P X pa X
θ

θ θ θ
=

= =∏

( | ,D) ( , | ) ( )

( | , )bayes

P S P S D P

P S D d

θ θ θ

θ θ θ θ

=

= ∫



Learning Bayesian Networks

1. A network structure S

2. Parameters, Θ, for probability 
distributions on each node, given S

Given a set of observations D (i.e. expression 
data set) on X, we want to find:

NP-Hard



Learning S

Find optimal structure S given D

In special circumstances, integral analytically tractable
(e.g. no missing data, multinomial, dirichlet priors)

( | ) ( | ) ( )

( | ) ( | , ) ( | )

P S D P D S P S

P D S P D S P S dθ θ θ

∝

= ∫



Learning S – Heuristic Search

• Compute P(S|D) for all networks S 
• Select S* that maximizes P(S|D)

Problem 1: number of S grows super-exponentially with 
number of nodes – no exhaustive search, use hill 
climbing, etc..

Problem 2: Sparse data and overfitting

S

P(S|D)

S* S

P(S|D)

S*
Sparse dataLots of data



Model Averaging

• Rather than select only one model as result of 
search, we can draw many samples from 
P(M|D) and model average

( | ) ( | , ) ( | )

1 ( ) ( | )

xy
samples

xy
samples

P E D P Exy D S P S D

S P S D

=

=

∑

∑

How do we sample....?



Sampling Models - MCMC

( | ) ( ) ( | )min 1,
( | ) ( ) ( | )

new new old new

old old new old

P D S P S Q S Sp
P D S P S Q S S

⎧ ⎫
= ×⎨ ⎬

⎩ ⎭

Markov Chain Monte Carlo Method

Sample from

Direct approach intractable due to partition function

MCMC
• Propose – Given Sold, propose new Snew with 

probability Q(Snew|Sold)

• Accept/Reject – Accept Snew as sample with

( | ) ( )( | ) s k

( | ) ( )s k
k

P D S P SP S D
P D S P S∑

=
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