
MIT OpenCourseWare
http://ocw.mit.edu

6.231 Dynamic Programming and Stochastic Control
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.231 Dynamic Programming and Optimal Control

Midterm Exam, Fall 2004

Prof. Dimitri Bertsekas

Problem 1: (30 points)

Air transportation is available between all pairs of n cities, but because of a perverse fare structure, it may

be more economical to go from one city to another through intermediate stops. A cost-minded traveller
wants to find the minimum cost fare to go from an origin city s to a destination city t. The airfare between

cities i and j is denoted by aij , and for the mth intermediate stop, there is a stopover cost cm (aij and cm

are assumed positive). Thus, for example, to go from s to t directly it costs ast, while to go from s to t with

intermediate stops at cities i1 and i2, it costs asi1 + c1 + ai1i2 + c2 + ai2t.

(a) Formulate the problem as a shortest path problem, and identify the nodes, arcs, and arc costs.

(b) Formulate the problem as a stopping problem, and identify the state space, control space, system, cost
per stage, and terminal cost.

(c) Write a corresponding DP algorithm that finds an optimal solution in n − 2 stages.

(d) Assume that cm is the same for all m. Devise a rule for detecting that an optimal solution has been found

before iteration n − 2 of the DP algorithm.

Solution: (a) We introduce a node for each pair (i, m), where i is a city other than s and t, and m is the

number of stopovers thus far, where m = 1, 2, . . . , n − 2. Thus, when at node (i, m), the implication is that
we are at city i after m stopovers. The two other nodes are the origin and destination cities s and t. The

arcs of the graph are:

s to t with cost ast,

s to (i, 1) with cost c1 + asi, i =� s, t,

(i, m) to t with cost ait, i =� s, t,

(i, m) to (j,m + 1) with cost cm+1 + aij , i =� s, t, j =� i, s, t.

1

� �

� �

� � �

� �

�

� �

Evidently, the shortest path from s to t gives the least cost path with stopovers.

(b) We introduce a stopping state corresponding to the destination city t, and an initial state corresponding

to the origin city s. There are n − 1 stages (stage 0 corersponds to being at the initial state s). At the

kth stage, k = 1, . . . , n − 2, the states (other than t) are the cities i =� s, t, and state ik = i corresponds to

being at city i after k stopovers. The stopping action at state s or ik has cost ast or aik t, respectively. The

continuation action at s chooses as next state i1 = i = s, t with cost c1 + asi, and at ik = i, i = s, t, chooses
as next state ik+1 = j =� i, s, t with cost ck+1 + aij . Stopping is mandatory at stage n − 2. The problem is
deterministic, and evidently the minimal cost starting at s gives the least cost from s to t with stopovers.

(c) The DP algorithm for the stopping problem of part (b) is

Jn−2(in−2) = ain−2 t, in−2 =� s, t,

Jk(ik) = min aikt, min ck+1 + aik j + Jk+1(j) , k = 1, 2, . . . , n − 3, ik = s, t,
j=ik ,s,t

�

J0(s) = min ast, min c1 + asj + J1(j) ,
j=s,t

and requires n − 2 stages.

(d) If cm is the same for all m, the DP algorithm of part (c) is stationary. Thus, if for some k, we have

Jk(i) = Jk+1(i) for all i =� s, t, we will have Jk� (i) = Jk+1(i) for all i =� s, t and k� ≤ k, so the computation of
Jk� (i) for k� < k is unnecessary, and the DP algorithm can be terminated. The meaning of Jk(i) = Jk+1(i)
for all i =� s, t is that the minimum cost path from s to t requires no more than n − k − 2 stopovers.

Problem 2: (35 points)

Consider an inventory control problem where the stock xk is perfectly observed at each stage and evolves
according to

xk+1 = xk + uk − wk.

The demands wk are independent, identically distributed, nonnegative random variables with known distri
bution. The control uk is nonnegative. There is no terminal cost. The cost of stage k is

cuk + p max(0, wk − xk − uk − tk) + h max(0, xk + uk − wk),

where c, h, and p are positive scalars with p > c, and tk, k = 0, 1, . . . , N − 1, are independent identically

distributed nonnegative random variables that take values in some bounded interval. The common distribu
tion of the tk is unknown, except for the fact that it is one out of two known distributions, F1 and F2. The

2

�

�

�

� � ��

a priori probability that F1 is the correct distribution is a given scalar q, with 0 < q < 1. The exact value

of tk is known once the controller reaches stage k, but not before.

(a) Formulate this as an imperfect state information problem, and identify the state, control, system distur
bance, observation, and observation disturbance.

(b) Write a DP algorithm in terms of a suitable sufficient statistic.

(c) Characterize as best as you can the optimal policy.

Solution: (a) The state is (xk, tk, dk), where dk takes the value 1 or 2 depending on whether the common

distribution of the tk is F1 or F2. The variable dk stays constant (i.e., satisfies dk+1 = dk for all k), but is
not observed perfectly. Instead, the sample values t0, t1, . . . are observed and provide information regarding

the value of dk. In particular, given the a priori probability q and the demand values t0, . . . , tk−1, we can

calculate the conditional probability that tk will be generated according to F1.

(b) A suitable sufficient statistic is (xk, tk, qk), where

qk = P (dk = 1 | t0, . . . , tk−1).

The conditional probability qk evolves according to

qkF1(tk)
qk+1 = , q0 = q.

qkF1(tk) + (1 − qk)F2(tk)

The initial step of the DP algorithm in terms of this sufficient statistic is

JN−1(xN−1, tN −1, qN −1) = min cuN−1
uN−1 ≥0 .

+ EwN −1 p max(0, wN −1 − xN −1 − uN−1 − tN−1) + h max(0, xN−1 + uN−1 − wN −1)}

The typical step of the DP algorithm for k = 0, 1, . . . , N − 1 is

Jk(xk, tk, qk) = min cuk

uk≥0

+ Ewk ,tk+1 p max(0, wk − xk − uk − tk) + h max(0, xk + uk − wk)

+ Jk+1 xk + uk − wk, tk+1, φ(qk, tk)

where
qkF1(tk)

φ(qk, tk) = ,
qkF1(tk) + (1 − qk)F2(tk)

and tk+1 has distribution F1 with probability φ(qk, tk) and distribution F2 with probability 1 − φ(qk, tk).

3

� � ��

(c) Notice that the cost-per-stage, for fixed finite-valued uk, wk, and tk, is convex and coercive in xk.
Therefore, it can be shown inductively, as in the text, that Jk(xk, tk, qk) for k = 0, 1, . . . , N − 1 is convex

and coercive as a function of xk for fixed tk and qk. It follows that for each value of tk and qk, there is a

threshold Sk(tk, qk) such that it is optimal to order an amount Sk(tk, qk) − xk, if Sk(tk, qk) > xk, and to

order nothing otherwise. In particular, Sk(tk, qk) minimizes over y the function

cy + Ewk ,tk+1 p max(0, wk − y − tk) + h max(0, y − wk) + Jk+1 y − wk, tk+1, φ(qk, tk)

Problem 3: (35 points)

You decide not to use your car for N days, which raises the issue of where to park it. At the beginning of
each day you may either park it in a garage, which costs G per day, or on the street for free. However, in

the latter case, you run the risk of getting a parking ticket, which costs T , with probability pj , where j is
the number of consecutive days that the car has been parked on the street (e.g., on the first day you park on

the street, you have probability p1 of getting a ticket, on the second successive day you park on the street,
you have probability p2, etc). Assume that pj is monotonically increasing in j, and that you may receive at
most one ticket per day when parked on the street.

(a) Formulate this as a DP problem, identify the state space, control space, system, cost per stage, and

terminal cost, and write the corresponding DP algorithm.

(b) Characterize as best as you can the optimal policy.

(c) Consider the variant of the problem whereby once you decide to park in the garage, you must stay parked

in the garage for the remaining days at a cost of G per day. Formulate this as a DP problem, and

characterize as best as you can the optimal policy.

Solution: (a) Let the state be the number of consecutive days that the car is parked on the street, so the

initial state is 0. Because there are N days in total, the state space is {0, 1, . . . , N}. At the end of each day

and at state j, the controller chooses to either park on the street, which increases the state to j + 1 and

incurs a cost T with probability pj+1, or in the garage, which returns the state to 0 and incurs a cost G.
There is no terminal cost. We have the following DP algorithm:

JN (j) = 0

4

�

�

�

Jk(j) = min[G + Jk+1(0), pj+1T + Jk+1(j + 1)], k = 0, 1, . . . , N − 1 � �� � � �� �
garage street

(b) We show by induction that Jk(j) is monotonically nondecreasing in j for k = 0, 1, . . . , N − 1, which

simultaneously shows that the optimal policy at each stage k is to park on the street if and only if the

state j is less than some threshold jk. At stage N − 1, we have JN−1(j) = min[G, pj+1T]. Because pj+1 is
monotonically increasing in j, we have

G if j ≥ jN−1,JN−1(j) =
pj+1T if j < jN−1

where jN−1 is the smallest integer j such that pj+1T ≥ G. Notice that JN−1(j) is monotonically nonde
creasing in j and corresponds to the optimal policy:

µ∗ (j) =
garage if j ≥ jN−1,

N−1 street if j < jN−1

Assume for induction that Jk+1(j) is monotonically nondecreasing in j. Then the right-hand term in

the minimization of the DP algorithm, pj+1T + Jk+1(j + 1), is monotonically nondecreasing in j. Since

the left-hand term in the minimization, G + Jk+1(0), is constant with respect to j, we know that Jk(j) is
monotonically nondecreasing in j, which corresponds to the following optimal policy:

µ∗ (j) =
garage if j ≥ jk,

k street if j < jk

where jk is the smallest integer j such that

pj+1T + Jk+1(j + 1) ≥ G + Jk+1(0).

Notice that if j satisfies pj+1T ≥ G, then j satisfies pj+1T + Jk+1(j + 1) ≥ G + Jk+1(0), meaning jk ≤ jN−1

for all k.

The optimal policy has one of two forms: 1) Alternate between parking in the street for a number of days,
and parking in the garage for one day, or 2) Alternate between parking in the street for a number of days,
and parking in the garage for one day, up to some point, and then park in the garage permanently.

(c) We rewrite the DP algorithm from part (a), replacing the cost-to-go for parking in the garage with

(N − k)G, where k is the current stage.

JN (j) = 0

Jk(j) = min[(N − k)G, pj+1T + Jk+1(j + 1)]� �� � � �� �
garage street

In order to have the stopping cost functions be stationary and equivalent to the terminal cost, define

Vk(j) = Jk(j) − (N − k)G. Rewriting the DP algorithm in terms of Vk(j), we have:

VN (j) = 0

Vk(j) = min[0 , pj+1T + Vk+1(j + 1) − G]���� � �� �
garage street

5

The problem now follows the format for a basic stopping problem as defined in the text, where parking in

the garage is considered stopping. We first find the one-step stopping set TN−1. At stage N − 1, we have:

VN−1(j) = min[0 , pj+1T − G]���� � �� �
garage street

which corresponds to the following one-step stopping set:

TN−1 = {j | pj+1T ≥ G} = {j | j ≥ jN−1}

We now show TN−1 is absorbing. For any j ∈ TN−1 and if we do not stop, the next state is j + 1. Because

j + 1 > j ≥ jN−1, we have j + 1 ∈ TN−1, meaning TN−1 is absorbing. Therefore, Tk = TN−1 for all k.

Thus the optimal policy is to park in the street for the minimum number of days needed to get into the

one-step stopping set, and then park in the garage permanently thereafter. Intuitively this policy makes
sense. The cost-per-day of parking in the garage is constant, while the cost-per-day of parking on the street
is increasing. Irrespective of the stage index, we stop once the expected cost of street parking exceeds the

cost of the garage.

6

