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6.231 Dynamic Programming and Optimal Control


Midterm Exam, Fall 2004


Prof. Dimitri Bertsekas


Problem 1: (30 points) 

Air transportation is available between all pairs of n cities, but because of a perverse fare structure, it may 

be more economical to go from one city to another through intermediate stops. A cost-minded traveller 
wants to find the minimum cost fare to go from an origin city s to a destination city t. The airfare between 

cities i and j is denoted by aij , and for the mth intermediate stop, there is a stopover cost cm (aij and cm 

are assumed positive). Thus, for example, to go from s to t directly it costs ast, while to go from s to t with 

intermediate stops at cities i1 and i2, it costs asi1 + c1 + ai1i2 + c2 + ai2t. 

(a) Formulate the problem as a shortest path problem, and identify the nodes, arcs, and arc costs. 

(b) Formulate the problem as a stopping problem, and identify the state space, control space, system, cost 
per stage, and terminal cost. 

(c) Write a corresponding DP algorithm that finds an optimal solution in n − 2 stages. 

(d) Assume that cm is the same for all m. Devise a rule for detecting that an optimal solution has been found 

before iteration n − 2 of the DP algorithm. 

Solution: (a) We introduce a node for each pair (i, m), where i is a city other than s and t, and m is the 

number of stopovers thus far, where m = 1, 2, . . . , n − 2. Thus, when at node (i, m), the implication is that 
we are at city i after m stopovers. The two other nodes are the origin and destination cities s and t. The 

arcs of the graph are: 

s to t with cost ast, 

s to (i, 1) with cost c1 + asi, i =� s, t, 

(i, m) to t with cost ait, i =� s, t, 

(i, m) to (j,m + 1) with cost cm+1 + aij , i =� s, t, j =� i, s, t. 
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Evidently, the shortest path from s to t gives the least cost path with stopovers. 

(b) We introduce a stopping state corresponding to the destination city t, and an initial state corresponding 

to the origin city s. There are n − 1 stages (stage 0 corersponds to being at the initial state s). At the 

kth stage, k = 1, . . . , n − 2, the states (other than t) are the cities i =� s, t, and state ik = i corresponds to 

being at city i after k stopovers. The stopping action at state s or ik has cost ast or aik t, respectively. The 

continuation action at s chooses as next state i1 = i = s, t with cost c1 + asi, and at ik = i, i = s, t, chooses 
as next state ik+1 = j =� i, s, t with cost ck+1 + aij . Stopping is mandatory at stage n − 2. The problem is 
deterministic, and evidently the minimal cost starting at s gives the least cost from s to t with stopovers. 

(c) The DP algorithm for the stopping problem of part (b) is 

Jn−2(in−2) = ain−2 t, in−2 =� s, t, 

Jk(ik) = min aikt, min ck+1 + aik j + Jk+1(j) , k = 1, 2, . . . , n − 3, ik = s, t, 
j=ik ,s,t 

�

J0(s) = min ast, min c1 + asj + J1(j) , 
j=s,t 

and requires n − 2 stages. 

(d) If cm is the same for all m, the DP algorithm of part (c) is stationary. Thus, if for some k, we have 

Jk(i) = Jk+1(i) for all i =� s, t, we will have Jk� (i) = Jk+1(i) for all i =� s, t and k� ≤ k, so the computation of 
Jk� (i) for k� < k is unnecessary, and the DP algorithm can be terminated. The meaning of Jk(i) = Jk+1(i) 
for all i =� s, t is that the minimum cost path from s to t requires no more than n − k − 2 stopovers. 

Problem 2: (35 points) 

Consider an inventory control problem where the stock xk is perfectly observed at each stage and evolves 
according to 

xk+1 = xk + uk − wk. 

The demands wk are independent, identically distributed, nonnegative random variables with known distri
bution. The control uk is nonnegative. There is no terminal cost. The cost of stage k is 

cuk + p max(0, wk − xk − uk − tk) + h max(0, xk + uk − wk), 

where c, h, and p are positive scalars with p > c, and tk, k = 0, 1, . . . , N − 1, are independent identically 

distributed nonnegative random variables that take values in some bounded interval. The common distribu
tion of the tk is unknown, except for the fact that it is one out of two known distributions, F1 and F2. The 
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a priori probability that F1 is the correct distribution is a given scalar q, with 0 < q < 1. The exact value 

of tk is known once the controller reaches stage k, but not before. 

(a) Formulate this as an imperfect state information problem, and identify the state, control, system distur
bance, observation, and observation disturbance. 

(b) Write a DP algorithm in terms of a suitable sufficient statistic. 

(c) Characterize as best as you can the optimal policy. 

Solution: (a) The state is (xk, tk, dk), where dk takes the value 1 or 2 depending on whether the common 

distribution of the tk is F1 or F2. The variable dk stays constant (i.e., satisfies dk+1 = dk for all k), but is 
not observed perfectly. Instead, the sample values t0, t1, . . . are observed and provide information regarding 

the value of dk. In particular, given the a priori probability q and the demand values t0, . . . , tk−1, we can 

calculate the conditional probability that tk will be generated according to F1. 

(b) A suitable sufficient statistic is (xk, tk, qk), where 

qk = P (dk = 1 | t0, . . . , tk−1). 

The conditional probability qk evolves according to 

qkF1(tk) 
qk+1 = , q0 = q. 

qkF1(tk) + (1 − qk)F2(tk) 

The initial step of the DP algorithm in terms of this sufficient statistic is 

JN−1(xN−1, tN −1, qN −1) = min cuN−1 
uN−1 ≥0 . 

+ EwN −1 p max(0, wN −1 − xN −1 − uN−1 − tN−1) + h max(0, xN−1 + uN−1 − wN −1)} 

The typical step of the DP algorithm for k = 0, 1, . . . , N − 1 is 

Jk(xk, tk, qk) = min cuk

uk≥0


+ Ewk ,tk+1 p max(0, wk − xk − uk − tk) + h max(0, xk + uk − wk) 

+ Jk+1 xk + uk − wk, tk+1, φ(qk, tk) 

where 
qkF1(tk)

φ(qk, tk) = , 
qkF1(tk) + (1 − qk)F2(tk) 

and tk+1 has distribution F1 with probability φ(qk, tk) and distribution F2 with probability 1 − φ(qk, tk). 
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(c) Notice that the cost-per-stage, for fixed finite-valued uk, wk, and tk, is convex and coercive in xk. 
Therefore, it can be shown inductively, as in the text, that Jk(xk, tk, qk) for k = 0, 1, . . . , N − 1 is convex 

and coercive as a function of xk for fixed tk and qk. It follows that for each value of tk and qk, there is a 

threshold Sk(tk, qk) such that it is optimal to order an amount Sk(tk, qk) − xk, if Sk(tk, qk) > xk, and to 

order nothing otherwise. In particular, Sk(tk, qk) minimizes over y the function 

cy + Ewk ,tk+1 p max(0, wk − y − tk) + h max(0, y − wk) + Jk+1 y − wk, tk+1, φ(qk, tk) 

Problem 3: (35 points) 

You decide not to use your car for N days, which raises the issue of where to park it. At the beginning of 
each day you may either park it in a garage, which costs G per day, or on the street for free. However, in 

the latter case, you run the risk of getting a parking ticket, which costs T , with probability pj , where j is 
the number of consecutive days that the car has been parked on the street (e.g., on the first day you park on 

the street, you have probability p1 of getting a ticket, on the second successive day you park on the street, 
you have probability p2, etc). Assume that pj is monotonically increasing in j, and that you may receive at 
most one ticket per day when parked on the street. 

(a) Formulate this as a DP problem, identify the state space, control space, system, cost per stage, and 

terminal cost, and write the corresponding DP algorithm. 

(b) Characterize as best as you can the optimal policy. 

(c) Consider the variant of the problem whereby once you decide to park in the garage, you must stay parked 

in the garage for the remaining days at a cost of G per day. Formulate this as a DP problem, and 

characterize as best as you can the optimal policy. 

Solution: (a) Let the state be the number of consecutive days that the car is parked on the street, so the 

initial state is 0. Because there are N days in total, the state space is {0, 1, . . . , N}. At the end of each day 

and at state j, the controller chooses to either park on the street, which increases the state to j + 1 and 

incurs a cost T with probability pj+1, or in the garage, which returns the state to 0 and incurs a cost G. 
There is no terminal cost. We have the following DP algorithm: 

JN (j) = 0 
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Jk(j) = min[G + Jk+1(0), pj+1T + Jk+1(j + 1) ], k = 0, 1, . . . , N − 1 � �� � � �� � 
garage street 

(b) We show by induction that Jk(j) is monotonically nondecreasing in j for k = 0, 1, . . . , N − 1, which 

simultaneously shows that the optimal policy at each stage k is to park on the street if and only if the 

state j is less than some threshold jk. At stage N − 1, we have JN−1(j) = min[G, pj+1T ]. Because pj+1 is 
monotonically increasing in j, we have 

G if j ≥ jN−1,JN−1(j) = 
pj+1T if j < jN−1 

where jN−1 is the smallest integer j such that pj+1T ≥ G. Notice that JN−1(j) is monotonically nonde
creasing in j and corresponds to the optimal policy: 

µ∗ (j) = 
garage if j ≥ jN−1, 

N−1 street if j < jN−1 

Assume for induction that Jk+1(j) is monotonically nondecreasing in j. Then the right-hand term in 

the minimization of the DP algorithm, pj+1T + Jk+1(j + 1), is monotonically nondecreasing in j. Since 

the left-hand term in the minimization, G + Jk+1(0), is constant with respect to j, we know that Jk(j) is 
monotonically nondecreasing in j, which corresponds to the following optimal policy: 

µ∗ (j) = 
garage if j ≥ jk, 

k street if j < jk 

where jk is the smallest integer j such that 

pj+1T + Jk+1(j + 1) ≥ G + Jk+1(0). 

Notice that if j satisfies pj+1T ≥ G, then j satisfies pj+1T + Jk+1(j + 1) ≥ G + Jk+1(0), meaning jk ≤ jN−1 

for all k. 

The optimal policy has one of two forms: 1) Alternate between parking in the street for a number of days, 
and parking in the garage for one day, or 2) Alternate between parking in the street for a number of days, 
and parking in the garage for one day, up to some point, and then park in the garage permanently. 

(c) We rewrite the DP algorithm from part (a), replacing the cost-to-go for parking in the garage with 

(N − k)G, where k is the current stage. 

JN (j) = 0 

Jk(j) = min[(N − k)G, pj+1T + Jk+1(j + 1) ]� �� � � �� � 
garage street 

In order to have the stopping cost functions be stationary and equivalent to the terminal cost, define 

Vk(j) = Jk(j) − (N − k)G. Rewriting the DP algorithm in terms of Vk(j), we have: 

VN (j) = 0 

Vk(j) = min[ 0 , pj+1T + Vk+1(j + 1) − G]���� � �� � 
garage street 
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The problem now follows the format for a basic stopping problem as defined in the text, where parking in 

the garage is considered stopping. We first find the one-step stopping set TN−1. At stage N − 1, we have: 

VN−1(j) = min[ 0 , pj+1T − G]���� � �� � 
garage street 

which corresponds to the following one-step stopping set: 

TN−1 = {j | pj+1T ≥ G} = {j | j ≥ jN−1} 

We now show TN−1 is absorbing. For any j ∈ TN−1 and if we do not stop, the next state is j + 1. Because 

j + 1 > j ≥ jN−1, we have j + 1 ∈ TN−1, meaning TN−1 is absorbing. Therefore, Tk = TN−1 for all k. 

Thus the optimal policy is to park in the street for the minimum number of days needed to get into the 

one-step stopping set, and then park in the garage permanently thereafter. Intuitively this policy makes 
sense. The cost-per-day of parking in the garage is constant, while the cost-per-day of parking on the street 
is increasing. Irrespective of the stage index, we stop once the expected cost of street parking exceeds the 

cost of the garage. 
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