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6.231 Dynamic Programming 

Midterm, Fall 2008 

Instructions 

The midterm comprises three problems. Problem 1 is worth 60 points, problem 2 is worth 40 points, and 

problem 3 is worth 40 points. Your grade G ∈ [0, 100] is given by the following formula: 

G = 60 f1 + 40 min[1, f2 + f3],· · 

where fi ∈ [0, 1], i = 1, 2, 3, is the fraction of problem i that you solved correctly. 

Notice that if you solve correctly both problems 2 and 3, but you do not solve problem 1, your grade will 
only be G = 40. Thus, try to solve problem 1 first, then choose between problems 2 and 3 (whichever you 

prefer), and if you still have time, try to do the remaining problem. 

Credit is given only for clear logic and careful reasoning. 

GOOD LUCK! 
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Problem 1 (Infinite Horizon Problem, 60 points) 

An engineer has invented a better mouse trap and is interested in selling it for the right price. At the 

beginning of each period, he receives a sale offer that takes one of the values s1, . . . , sn with corresponding 

probabilities p1, . . . , pn, independently of prior offers. If he accepts the offer he retires from engineering. If 
he refuses the offer, he may accept subsequent offers but he also runs the risk that a competitor will invent 
an even better mouse trap, rendering his own unsaleable; this happens with probability β > 0 at each time 

period, independently of earlier time periods. While he is overtaken by the competitor, at each time period, 
he may choose to retire from engineering, or he may choose to invest an amount v ≥ 0, in which case he 

has a probability γ to improve his mouse trap, overtake his competitor, and start receiving offers as earlier. 
The problem is to determine the engineer’s strategy to maximize his discounted expected payoff (minus 
investment cost), assuming a discount factor α < 1. 

(a) [15 points] Formulate the problem as an infinite horizon discounted cost problem and write the corre
sponding Bellman’s equation. 

(b) [15 points] Characterize as best as you can an optimal policy. 

(c) [10 points] Describe as best as you can how policy iteration would work for this problem. What kind of 
initial policy would lead to an efficient policy iteration algorithm? 

(d) [10 points] Assume that there is no discount factor. Does the problem make sense as an average cost per 
stage problem? 

(e) [10 points] Assume that there is no discount factor and that the investment cost v is equal to 0. Does the 

problem make sense as a stochastic shortest path problem, and what is then the optimal policy? 

Solution to Problem 1 

(a) The states are {xi|i = 1, . . . , n} ∪ {t, r}, with the following meaning: 

xi: receiving offer si; t: overtaken; r: retired. 

The possible controls (depending on the state) are {A(accept offer), I(invest), R(retire), Rej(reject)}. The 

state r is absorbing, and for the other states, the sets of admissible controls are 

U(xi) = {A, Rej}, U(t) = {I, R}. 
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The transition probabilities and the per-stage costs are evident from the Bellman’s equation. Bellman’s 
equation for α < 1 is ⎡ ⎛ ⎞⎤ 

n

J∗(xi) = max ⎣si, α ⎝(1 − β) pj J∗(xj ) + βJ∗(t)⎠⎦ , (1) 
j=1 ⎡ ⎛ ⎞⎤ 

n

J∗(t) = max ⎣0, −v + α ⎝γ pj J∗(xj ) + (1 − γ)J∗(t)⎠⎦ . (2) 
j=1 

(b) From Eq. (1), we see that since the second term in the minimization of the right-hand side does not depend 

on the current state xi, the optimal policy is a threshold policy at states xi, i = 1, . . . , n. A single threshold is 
needed since J∗(s) is clearly monotonically nondecreasing with s. From Eq. (2), we see that once the inventor 
has been overtaken, it is optimal to retire immediately is 0 > −v + α γ j

n 
=1 pj J∗(xj ) + (1 − γ)J∗(t) . 

(c) We already know that an optimal policy is a threshold policy. It is easy to see that the policy iteration 

algorithm, when started with a threshold policy, generates a sequence of threshold policies. It follows that 
starting with a threshold policy, after at most 2n iterations, policy iteration will terminate with an optimal 
threshold policy. 

(d) Even without discounting, all policies have finite total cost, except the one that never sells and always 
invests, which incurs infinite total cost (and clearly it is not optimal). Thus, we see that under the average 

cost criterion, all of the finite total cost policies will be optimal. Thus, the average cost criterion does not 
discriminate enough between different policies and makes no sense. Notice that assumption 7.4.1 is not 

satisfied. 

(e) Since there is no discounting and v = 0, there is no penalty for waiting as long as necessary until the 

maximum possible offer is received, which is going to happen with probability 1. So the optimal policy is to 

wait for and accept the maximum offer. Thus a stochastic shortest path formulation makes limited sense, 
since it excludes from consideration all offers except the maximum possible, no matter how unlikely this 
maximum offer is. Notice that assumption 7.2.1 is not satisfied. 

Problem 2 (Imperfect State Information Problem, 40 points) 

A machine tosses a coin N times, but each time may switch the probability of heads between two possible 

values h and h. The switch occurs with probability q at each time, independently of the switches in previous 
times. A gambler may bet on the outcome of each coin toss knowing h, h, and q, the outcomes of previous 
tosses, and the probability r that h is used at the initial toss. If the gambler bets on a coin toss, he wins $ 2 

if a head occurs, while he loses $ 1 if a tail occurs. The gambler may also (permanently) stop betting prior 
to any coin toss. 
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pk+1 = 

= Pr{xk+1 = h | zk, zk−1, . . . , z0} 

Pr{xk+1 = h, z
= k | zk−1, . . . , z0}

Pr{zk | zk−1, . . . , z0} 

Pr
= 

{zk | xk+1 = h, zk 1, . . . , z0} Pr− {xk+1 = h | zk−1, . . . , z0}
Pr{zk | xk = h, zk 1, . . . , z0}Pr�{xk = h | zk 1, . . . , z  − 0}+ Pr{zk | xk = h, z− k ,−1 . . . , z0}Pr{xk = h | zk−1, . . . , z0} 

 

Pr{zk | xk+1 = h, zk−1, . . . , z0} Pr{xk+1 = h | xk = h, zk 1, . . . , z0}pk + Pr{xk+1 = h | xk = h, z− k−1, . . . , z0}(1 − pk) 

= 

�
fh(zk)pk + fh(zk)(1 − pk) 

� 

(a) [20 points] Define 

r	 for k = 0, 
pk = 

Prob{Coin with a probability of heads h is used at toss k | zk−1, . . . , z0} for k = 1, . . . , N − 1, 

where zk−1, . . . , z0 are the preceding observed tosses. Write a equation for the evolution of pk as the coin 

tosses are observed. 

(b) [10 points]	 Use the equation of part (a) to write a DP algorithm to find the gambler’s optimal policy for 
betting or stopping to bet prior to any coin toss. (You will receive credit if you do this part correctly, 
assuming a generic functional form of this equation.) 

(c) [10 points] Repeat part (b) for the variant of the problem where the gambler may resume play at any 

time after he stops betting, and he keeps observing the coin tosses also when he is not betting. 

Solution to Problem 2 

(a) The machine uses two coins, one with a probability of heads equal to h, and the other one with a 

probability of heads equal to h. We call the first coin a type h coin, while we call the second coin a type h 

coin. 

Let fh(z), z ∈ {head, tail}, be the probability mass function for the type h coin (clearly, fh(head) = h). 
Similarly, let f (z), z ∈ {head, tail}, be the probability mass function for the type h coin (clearly, f (head) = h	 h

h). 

We are faced with an imperfect state information problem, where the state at stage k, that we call xk, is 
the type of coin that the machine uses at stage k. We write xk = h if at stage k the machine uses a type h 

coin, and similarly we write xk = h if at stage k the machine uses a type h coin. 

The conditional probability pk is generated recursively according to the following equation (with p0 = r): 
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� � � � ��� � 
(1−q)pk q(1−pk )fh(zk) (1−q)pk+q(1−pk ) + fh(zk) (1−q)pk +q(1−pk ) (1 − q)pk + q(1 − pk) 

= = 
fh(zk)pk + f (zk)(1 − pk)h

= 
fh(zk)(1 − q)pk + f (zk)q(1 − pk)

= 
.

φ(pk, zk), h


fh(zk)pk + f (zk)(1 − pk)
h

since 

Pr{zk | xk+1 = h, zk−1, . . . , z0} = 

= Pr{zk | xk+1 = h, xk = h, zk−1, . . . , z0} Pr{xk = h | xk+1 = h, zk−1, . . . , z0}+ 

+ Pr{zk �| xk+1 = h, xk = h, zk−1, . . . , z0} Pr{xk = h | xk+1 = h, zk−1, . . . , z0} = � 

= fh(zk) 
Pr{xk+1 = h | xk = h, zk−1, . . . , z0}pk + 

Pr{xk+1 = h | xk = h, zk−1, . . . , z0}pk + Pr{xk+1 = h | xk = h, zk−1, . . . , z0}(1 − pk) 

+ fh(zk) 
Pr{xk+1 = h | xk = h, zk−1, . . . , z0}(1 − pk)

= 
Pr{xk+1 = h | xk = h, zk−1, . . . , z0}pk + Pr{xk+1 = h | xk = h, zk−1, . . . , z0}(1 − pk) 

(1 − q)pk q(1 − pk)

= fh(zk) 

(1 − q)pk + q(1 − pk)
+ fh(zk) 

(1 − q)pk + q(1 − pk)


(b) The DP algorithm is 

Jk(pk) = max 0 , 2 (pkh+(1−pk)h)−1 (pk(1−h)+(1−pk)(1−h))+Ezk Jk+1 φ(pk, zk) , k = 0, . . . , N−1,· ·
stop 

with JN (pN ) ≡ 0, and where zk = head with probability pkh + (1 − pk)h, and zk = tail with probability 

pk(1 − h) + (1 − pk)(1 − h). 

(c) In this case we have for k = 0, . . . , N − 1 � � � � �� 

Jk(pk) = max 0 + Ezk Jk+1 φk(pk, zk) , 2 (pkh+(1−pk)h)−1 (pk(1−h)+(1−pk)(1−h))+Ezk Jk+1 φk(pk, zk) ,· ·

do not play 

with JN (pN ) ≡ 0. 

Thus, we do not play if 

0 > 2 (pkh + (1 − pk)h) − 1 (pk(1 − h) + (1 − pk)(1 − h)),· · 

that is, assuming without loss of generality that h > h, we do not play if 

1 − 3h 
pk < . 

3(h − h) 
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Problem 3 (Optimal Stopping Problem, 40 points) 

A driver is looking for parking on the way to his destination. Each parking place is free with probability p 

independently of whether other parking places are free or not. The driver cannot observe whether a parking 

place is free until he reaches it. If he parks k places from his destination, he incurs a cost k. If he reaches 
the destination without having parked the cost is C. The driver wishes to find an optimal parking policy. 

(a) [20 points] Formulate the problem as a DP problem, clearly identifying, states, controls, transition prob
abilities and costs. 

(b) [20 points] Write the DP algorithm and show that it can be represented by the sequence {Ck} generated 

as follows


Ck = p min[k,Ck−1] + qCk−1, k = 1, 2, . . . ,


where C0 = C and q = 1 − p. Characterize as best as you can the optimal policy. 

Solution to Problem 3 

(a) Let the state be xk ∈ {T, T ̄ } where T represents the driver having parked before reaching the kth 

spot. If xk = T ̄ (that is we have not parked before reaching the kth spot), we have the control uk ∈ {P, P ̄ }, 
where P represents the choice to park in the kth spot; if xk = T we have no control. Let the disturbance 

wk equal 1 if the kth spot is free; otherwise it equals 0. When xk = T ̄, the cost associated with parking in 

the kth spot when the spot is free is: 

gk( ¯ T , P, 1) = k 

If the driver has not parked upon reaching his destination, he incurs a cost g0(T ̄) = C. All other costs are 

zero. The system evolves according to: 

¯ T, if xk = T or xk = T and uk = P and wk = 1 
xk−1 = ¯ T , otherwise 

(b) Once the driver has parked, his remaining cost is zero. The DP algorithm starts with 

J0(T ) = 0, J0(T ̄) = C 

and for k = 1, 2, . . ., we have 

� � � � � � 
Jk(T ̄) = min E gk( ¯ = min p k + Jk−1(T ) + T ) , Jk−1(T ̄)T , uk, wk) + Jk−1(xk−1) qJk−1( ¯ 

wk � �� � � �� � � �� �uk∈{P, P̄} 

park, free park, not free don�t park 

and


Jk(T ) = 0
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Define Ck to be the expected remaining cost, given that the driver has not parked before the kth spot; 
note that this is simply Jk(T ̄). Then, the sequence {Ck} is generated according to 

C0 = C, 

and for k = 1, 2, . . . we have 

Ck = min pk + qCk−1, Ck−1 = p min k, Ck−1 + qCk−1, 

since Jk(T ) = 0 for all k. 

Notice that Ck = p min k, Ck−1 + qCk−1 ≤ pCk−1 + qCk−1 = Ck. Therefore, Ck is monotonically non-
increasing. As a consequence, there exists a threshold k∗ such that parking is optimal if k < k∗, while 

non-parking is optimal for k > k∗. We conclude that the optimal policy is a threshold policy. 
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