6.231 Dynamic Programming and Stochastic Control Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.](http://ocw.mit.edu/terms)

6.231 DYNAMIC PROGRAMMING

LECTURE 23

LECTURE OUTLINE

- Review of indirect policy evaluation methods
- Multistep methods, $LSPE(\lambda)$
- LSTD (λ)
- Q-learning
- Q-learning with linear function approximation
- Q-learning for optimal stopping problems

REVIEW: PROJECTED BELLMAN EQUATION

For a fixed policy μ to be evaluated, consider the corresponding mapping T:

$$
(TJ)(i) = \sum_{i=1}^{n} p_{ij} (g(i,j) + \alpha J(j)), \qquad i = 1, ..., n,
$$

or more compactly,

$$
TJ = g + \alpha PJ
$$

The solution J_{μ} of Bellman's equation $J = TJ$ is approximated by the solution of

$$
\Phi r = \Pi T(\Phi r)
$$

Indirect method: Solving a projected form of Bellman's equation

PVI/LSPE

Key Result: ΠT is contraction of modulus α with respect to the weighted Euclidean norm $\|\cdot\|_{\xi}$, where $\xi = (\xi_1, \ldots, \xi_n)$ is the steady-state probability vector. The unique fixed point Φr^* of ΠT satisfies

$$
||J_{\mu} - \Phi r^*||_{\xi} \le \frac{1}{\sqrt{1 - \alpha^2}} ||J_{\mu} - \Pi J_{\mu}||_{\xi}
$$

• Projected Value Iteration (PVI): $\Phi r_{k+1} =$ $\Pi T(\Phi r_k)$, which can be written as

$$
r_{k+1} = \arg\min_{r \in \mathfrak{R}^s} \left\| \Phi r - T(\Phi r_k) \right\|_{\xi}^2
$$

or equivalently

$$
r_{k+1} = \arg\min_{r \in \mathbb{R}^s} \sum_{i=1}^n \xi_i \left(\phi(i)'r - \sum_{j=1}^n p_{ij} \left(g(i,j) + \alpha \phi(j)'r_k \right) \right)^2
$$

• LSPE (simulation-based approximation): We generate an infinite trajectory (i_0, i_1, \ldots) and update r_k after transition (i_k, i_{k+1})

$$
r_{k+1} = \arg\min_{r \in \Re^s} \sum_{t=0}^k (\phi(i_t)'r - g(i_t, i_{t+1}) - \alpha\phi(i_{t+1})'r_k)^2
$$

JUSTIFICATION OF PVI/LSPE CONNECTION

• By writing the necessary optimality conditions for the least squares minimization, PVI can be written as

$$
\left(\sum_{i=1}^{n} \xi_i \, \phi(i) \phi(i)' \right) r_{k+1} = \left(\sum_{i=1}^{n} \xi_i \, \phi(i) \sum_{j=1}^{n} p_{ij} \left(g(i,j) + \alpha \phi(j)' r_k\right) \right)
$$

Similarly, by writing the necessary optimality conditions for the least squares minimization, LSPE can be written as

$$
\left(\sum_{t=0}^{k} \phi(i_t) \phi(i_t)'\right) r_{k+1} = \left(\sum_{t=0}^{k} \phi(i_t) \left(g(i_t, i_{t+1}) + \alpha \phi(i_{t+1})' r_k\right)\right)
$$

• So LSPE is just PVI with the two expected values approximated by simulation-based averages.

• Convergence follows by the law of large num- bers.

The bottleneck in rate of convergence is the law of large of numbers/simulation error (PVI is a contraction with modulus α , and converges fast relative to simulation).

• Taking the limit in PVI, we see that the projected equation, $\Phi r^* = \Pi T(\Phi r^*)$, can be written as $Ar^* + b = 0$, where

$$
A = \sum_{i=1}^{n} \xi_i \phi(i) \left(\alpha \sum_{j=1}^{n} p_{ij} \phi(j) - \phi(i) \right)'
$$

$$
b = \sum_{i=1}^{n} \xi_i \phi(i) \sum_{j=1}^{n} p_{ij} g(i, j)
$$

• A, ^b are expected values that can be approximated by simulation: $A_k \approx A, b_k \approx b$, where

$$
A_k = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) \left(\alpha \phi(i_{t+1}) - \phi(i_t) \right)'
$$

$$
b_k = \frac{1}{k+1} \sum_{t=0}^k \phi(i_t) g(i_t, i_{t+1})
$$

• LSTD method: Approximates r^* as

$$
r^* \approx \hat{r}_k = -A_k^{-1}b_k
$$

• Conceptually very simple ... but less suitable for optimistic policy iteration (hard to transfer info from one policy evaluation to the next).

• Can be shown that convergence rate is the same for LSPE/LSTD (for large k, $||r_k-\hat{r}_k|| << ||r_k-r^*||$).

MULTISTEP METHODS

• Introduce a multistep version of Bellman's equation $J = T^{(\lambda)}J$, where for $\lambda \in [0, 1)$,

$$
T^{(\lambda)} = (1 - \lambda) \sum_{t=0}^{\infty} \lambda^t T^{t+1}
$$

• Note that T^t is a contraction with modulus α^t , with respect to the weighted Euclidean norm $\|\cdot\|_{\xi}$, where ξ is the steady-state probability vector of the Markov chain.

From this it follows that $T^{(\lambda)}$ is a contraction with modulus

$$
\alpha_{\lambda} = (1 - \lambda) \sum_{t=0}^{\infty} \alpha^{t+1} \lambda^t = \frac{\alpha (1 - \lambda)}{1 - \alpha \lambda}
$$

• T^t and $T^{(\lambda)}$ have the same fixed point J_μ and

$$
||J_{\mu} - \Phi r_{\lambda}^*||_{\xi} \le \frac{1}{\sqrt{1 - \alpha_{\lambda}^2}} ||J_{\mu} - \Pi J_{\mu}||_{\xi}
$$

where Φr^*_{λ} is the fixed point of $\Pi T^{(\lambda)}$.

• The fixed point Φr^*_{λ} depends on λ .

• Note that $\alpha_{\lambda} \downarrow 0$ as $\lambda \uparrow 1$, so error bound improves as $\lambda \uparrow 1$.

$PVI(\lambda)$

$$
\Phi r_{k+1} = \Pi T^{(\lambda)}(\Phi r_k) = \Pi \left((1 - \lambda) \sum_{t=0}^{\infty} \lambda^t T^{t+1}(\Phi r_k) \right)
$$

or

$$
r_{k+1} = \arg\min_{r \in \mathfrak{R}^s} \left\| \Phi r - T^{(\lambda)}(\Phi r_k) \right\|_{\xi}^2
$$

• Using algebra and the relation

$$
(T^{t+1}J)(i) = E\left\{\alpha^{t+1}J(i_{t+1}) + \sum_{k=0}^{t} \alpha^k g(i_k, i_{k+1}) \middle| i_0 = i\right\}
$$

we can write $PVI(\lambda)$ as

$$
r_{k+1} = \arg\min_{r \in \mathfrak{R}^s} \sum_{i=1}^n \xi_i \left(\phi(i)'r - \phi(i)'r_k - \sum_{t=0}^\infty (\alpha \lambda)^t E\left\{ d_k(i_t, i_{t+1}) \mid i_0 = i \right\} \right)^2
$$

where

$$
d_k(i_t, i_{t+1}) = g(i_t, i_{t+1}) + \alpha \phi(i_{t+1})' r_k - \phi(i_t)' r_k,
$$

are the, so called, temporal differences (TD) - they are the errors in satisfying Bellman's equation.

$\text{LSPE}(\lambda)$

Replacing the expected values defining $PVI(\lambda)$ by simulation-based estimates we obtain $LSPE(\lambda)$.

• It has the form

$$
r_{k+1} = \arg\min_{r \in \mathbb{R}^s} \sum_{t=0}^k \left(\phi(i_t)'r - \phi(i_t)'r_k - \sum_{m=t}^k (\alpha \lambda)^{m-t} d_k(i_m, i_{m+1}) \right)^2
$$

where (i_0, i_1, \ldots) is an infinitely long trajectory generated by simulation.

• Can be implemented with convenient incremental update formulas (see the text).

- Note the *λ*-tradeoff:
	- [−] As ^λ [↑] ¹, the accuracy of the solution ^Φr[∗] λ improves - the error bound to $||J_{\mu} - \Phi r_{\lambda}^*||_{{\xi}}^2$ improves.
	- $-$ As $\lambda \uparrow 1$, the "simulation noise" in the LSPE(λ) iteration (2nd summation term) increases, so longer simulation trajectories are needed for LSPE(λ) to approximate well PVI(λ).

Q-LEARNING I

- Q-learning has two motivations:
	- [−] Dealing with multiple policies simultaneously
	- [−] Using a model-free approach [no need to know $p_{ij}(u)$ explicitly, only to simulate them
- The *Q*-factors are defined by

$$
Q^*(i, u) = \sum_{j=1}^n p_{ij}(u) (g(i, u, j) + \alpha J^*(j)), \quad \forall (i, u)
$$

• In view of $J^* = TJ^*$, we have $J^*(i) = \min_{u \in U(i)} Q^*(i, u)$ so the Q factors solve the equation

$$
Q^*(i, u) = \sum_{j=1}^n p_{ij}(u) \left(g(i, u, j) + \alpha \min_{u' \in U(j)} Q^*(j, u') \right), \ \forall (i, u)
$$

• $Q(i, u)$ can be shown to be the unique solution of this equation. Reason: This is Bellman's equation for a system whose states are the original states $1, \ldots, n$, together with all the pairs (i, u) .

• Value iteration:

$$
Q(i, u) := \sum_{j=1}^{n} p_{ij}(u) \left(g(i, u, j) + \alpha \min_{u' \in U(j)} Q(j, u') \right), \ \forall (i, u)
$$

Q-LEARNING II

Use any probabilistic mechanism to select sequence of pairs (i_k, u_k) [all pairs (i, u) are chosen infinitely often], and for each k, select j_k accord-
ing to $p_{i_k j}(u_k)$.

• At each k, Q-learning algorithm updates $Q(i_k, u_k)$ according to

$$
Q(i_k, u_k) := (1 - \gamma_k(i_k, u_k)) Q(i_k, u_k)
$$

+ $\gamma_k(i_k, u_k) \left(g(i_k, u_k, j_k) + \alpha \min_{u' \in U(j_k)} Q(j_k, u') \right)$

• Stepsize $\gamma_k(i_k, u_k)$ must converge to 0 at proper rate (e.g., like $1/k$).

Important mathematical point: In the Q -factor version of Bellman's equation the order of expectation and minimization is reversed relatively to the ordinary cost version of Bellman's equation:

$$
J^*(i) = \min_{u \in U(i)} \sum_{j=1}^n p_{ij}(u) (g(i, u, j) + \alpha J^*(j))
$$

• Q-learning can be shown to converge to true/exact Q-factors (a sophisticated proof).

• Major drawback: The large number of pairs (i, u) - no function approximation is used.

Q-FACTOR APROXIMATIONS

• Introduce basis function approximation for ^Qfactors:

 $\tilde{Q}(i,u,r)=\phi(i,u)'r$

We cannot use LSPE/LSTD because the Q factor Bellman equation involves minimization/multiple controls.

- An optimistic version of LSPE(0) is possible:
- Generate an infinitely long sequence $\{(i_k, u_k) \mid$ $k = 0, 1, \ldots$ }.
- At iteration k, given r_k and state/control (i_k, u_k) :
	- (1) Simulate next transition (i_k, i_{k+1}) using the transition probabilities $p_{i_k j}(u_k)$.
	- (2) Generate control u_{k+1} from the minimization

$$
u_{k+1} = \arg\min_{u \in U(i_{k+1})} \tilde{Q}(i_{k+1}, u, r_k)
$$

(3) Update the parameter vector via

$$
r_{k+1} = \arg\min_{r \in \mathbb{R}^s} \sum_{t=0}^k \left(\phi(i_t, u_t)' r - g(i_t, u_t, i_{t+1}) - \alpha \phi(i_{t+1}, u_{t+1})' r_k \right)^2
$$

Q-LEARNING FOR OPTIMAL STOPPING

• Not much is known about convergence of optimistic LSPE(0).

Major difficulty is that the projected Bellman equation for Q-factors may not be a contraction, and may have multiple solutions or no solution.

There is one important case, **optimal stop**ping, where this difficulty does not occur.

Given a Markov chain with states $\{1, \ldots, n\},\$ and transition probabilities p_{ij} . We assume that the states form a single recurrent class, with steadystate distribution vector $\xi = (\xi_1, \ldots, \xi_n)$.

- At the current state i , we have two options:
	- $-$ Stop and incur a cost $c(i)$, or
	- $-$ Continue and incur a cost $g(i, j)$, where j is the next state.
- Q-factor for the continue action:

$$
Q(i) = \sum_{j=1}^{n} p_{ij} \Big(g(i, j) + \alpha \min \Big\{ c(j), Q(j) \Big\} \Big) \underline{\Delta} (FQ)(i)
$$

Major fact: F is a contraction of modulus α with respect to norm $\|\cdot\|_{\xi}$.

LSPE FOR OPTIMAL STOPPING

• Introduce Q-factor approximation

$$
\tilde{Q}(i,r)=\phi(i)'r
$$

• PVI for *Q*-factors:

$$
\Phi r_{k+1} = \Pi F(\Phi r_k)
$$

• LSPE

$$
r_{k+1} = \left(\sum_{t=0}^{k} \phi(i_t) \phi(i_t)'\right)^{-1}
$$

$$
\sum_{t=0}^{k} \phi(i_t) \left(g(i_t, i_{t+1}) + \alpha \min\{c(i_{t+1}), \phi(i_{t+1})' r_k\}\right)
$$

Simpler version: Replace the term $\phi(i_{t+1})'r_k$ by $\phi(i_{t+1})'r_t$. The algorithm still converges to the unique fixed point of ΠF (see H. Yu and D. P. Bertsekas, "A Least Squares Q-Learning Algorithm for Optimal Stopping Problems").