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6.231 DYNAMIC PROGRAMMING

LECTURE 23

LECTURE OUTLINE

• Review of indirect policy evaluation methods

• Multistep methods, LSPE(λ)

• LSTD(λ)

• Q-learning

• Q-learning with linear function approximation

• Q-learning for optimal stopping problems



REVIEW: PROJECTED BELLMAN EQUATION

• For a fixed policy µ to be evaluated, consider
the corresponding mapping T :

(TJ)(i) =
n∑

i=1

pij
(
g(i, j)+αJ(j)

)
, i = 1, . . . , n,

or more compactly,

TJ = g + αPJ

• The solution Jµ of Bellman’s equation J = TJ
is approximated by the solution of

Φr = ΠT (Φr)
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PVI/LSPE

• Key Result: ΠT is contraction of modulus
α with respect to the weighted Euclidean norm
‖ · ‖ξ, where ξ = (ξ1, . . . , ξn) is the steady-state
probability vector. The unique fixed point Φr∗ of
ΠT satisfies

‖Jµ − Φr∗‖ξ ≤ 1√
1 − α2

‖Jµ −ΠJµ‖ξ

• Projected Value Iteration (PVI): Φrk+1 =
ΠT (Φrk), which can be written as

rk+1 = arg min
r∈#s

∥∥Φr − T (Φrk)
∥∥2

ξ

or equivalently

rk+1 = arg min
r∈"s

n∑

i=1

ξi

(
φ(i)′r −

n∑

j=1

pij

(
g(i, j) + αφ(j)′rk

)
)2

• LSPE (simulation-based approximation):
We generate an infinite trajectory (i0, i1, . . .) and
update rk after transition (ik, ik+1)

rk+1 = arg min
r∈#s

k∑

t=0

(
φ(it)′r−g(it, it+1)−αφ(it+1)′rk

)2



JUSTIFICATION OF PVI/LSPE CONNECTION

• By writing the necessary optimality conditions
for the least squares minimization, PVI can be
written as

(
n∑

i=1

ξi φ(i)φ(i)′

)
rk+1 =

(
n∑

i=1

ξi φ(i)

n∑

j=1

pij

(
g(i, j) + αφ(j)′rk

)
)

• Similarly, by writing the necessary optimal-
ity conditions for the least squares minimization,
LSPE can be written as

(
k∑

t=0

φ(it)φ(it)
′

)
rk+1 =

(
k∑

t=0

φ(it)
(
g(it, it+1) + αφ(it+1)′rk

)
)

• So LSPE is just PVI with the two expected val-
ues approximated by simulation-based averages.
• Convergence follows by the law of large num-
bers.
• The bottleneck in rate of convergence is the
law of large of numbers/simulation error (PVI is
a contraction with modulus α, and converges fast
relative to simulation).



LEAST SQUARES TEMP. DIFFERENCES (LSTD)

• Taking the limit in PVI, we see that the pro-
jected equation, Φr∗ = ΠT (Φr∗), can be written as
Ar∗ + b = 0, where

A =

n∑

i=1

ξi φ(i)

(
α

n∑

j=1

pijφ(j) − φ(i)

)′

b =

n∑

i=1

ξi φ(i)

n∑

j=1

pijg(i, j)

• A, b are expected values that can be approxi-
mated by simulation: Ak ≈ A, bk ≈ b, where

Ak =
1

k + 1

k∑

t=0

φ(it)
(
αφ(it+1) − φ(it)

)′

bk =
1

k + 1

k∑

t=0

φ(it)g(it, it+1)

• LSTD method: Approximates r∗ as

r∗ ≈ r̂k = −A−1
k bk

• Conceptually very simple ... but less suitable for
optimistic policy iteration (hard to transfer info
from one policy evaluation to the next).
• Can be shown that convergence rate is the same
for LSPE/LSTD (for large k, ‖rk−r̂k‖ << ‖rk−r∗‖).



MULTISTEP METHODS

• Introduce a multistep version of Bellman’s equa-
tion J = T (λ)J, where for λ ∈ [0, 1),

T (λ) = (1 − λ)

∞∑

t=0

λtT t+1

• Note that T t is a contraction with modulus αt,
with respect to the weighted Euclidean norm ‖ ·‖ξ,
where ξ is the steady-state probability vector of
the Markov chain.
• From this it follows that T (λ) is a contraction
with modulus

αλ = (1 − λ)

∞∑

t=0

αt+1λt =
α(1 − λ)

1 − αλ

• T t and T (λ) have the same fixed point Jµ and

‖Jµ − Φr∗λ‖ξ ≤
1√

1 − α2
λ

‖Jµ − ΠJµ‖ξ

where Φr∗λ is the fixed point of ΠT (λ).
• The fixed point Φr∗λ depends on λ.
• Note that αλ ↓ 0 as λ ↑ 1, so error bound improves
as λ ↑ 1.



PVI(λ)

Φrk+1 = ΠT (λ)(Φrk) = Π

(
(1 − λ)

∞∑

t=0

λtT t+1(Φrk)

)

or
rk+1 = arg min

r∈"s

∥∥Φr − T (λ)(Φrk)
∥∥2

ξ

• Using algebra and the relation

(T t+1J)(i) = E

{
αt+1J(it+1) +

t∑

k=0

αkg(ik, ik+1)

∣∣∣ i0 = i

}

we can write PVI(λ) as

rk+1 = arg min
r∈"s

n∑

i=1

ξi

(
φ(i)′r − φ(i)′rk

−
∞∑

t=0

(αλ)tE
{

dk(it, it+1) | i0 = i
}
)2

where

dk(it, it+1) = g(it, it+1) + αφ(it+1)′rk − φ(it)
′rk,

are the, so called, temporal differences (TD) - they
are the errors in satisfying Bellman’s equation.



LSPE(λ)

• Replacing the expected values defining PVI(λ)
by simulation-based estimates we obtain LSPE(λ).
• It has the form

rk+1 = arg min
r∈"s

k∑

t=0

(
φ(it)

′r − φ(it)
′rk

−
k∑

m=t

(αλ)m−tdk(im, im+1)

)2

where (i0, i1, . . .) is an infinitely long trajectory gen-
erated by simulation.
• Can be implemented with convenient incremen-
tal update formulas (see the text).
• Note the λ-tradeoff:

− As λ ↑ 1, the accuracy of the solution Φr∗λ
improves - the error bound to ‖Jµ − Φr∗λ‖ξ

improves.
− As λ ↑ 1, the “simulation noise” in the LSPE(λ)

iteration (2nd summation term) increases, so
longer simulation trajectories are needed for
LSPE(λ) to approximate well PVI(λ).



Q-LEARNING I

• Q-learning has two motivations:
− Dealing with multiple policies simultaneously
− Using a model-free approach [no need to know

pij(u) explicitly, only to simulate them]
• The Q-factors are defined by

Q∗(i, u) =

n∑

j=1

pij(u)
(
g(i, u, j) + αJ∗(j)

)
, ∀ (i, u)

• In view of J∗ = TJ∗, we have J∗(i) = minu∈U(i) Q∗(i, u)

so the Q factors solve the equation

Q∗(i, u) =

n∑

j=1

pij(u)

(
g(i, u, j) + α min

u′∈U(j)
Q∗(j, u′)

)
, ∀ (i, u)

• Q(i, u) can be shown to be the unique solution of
this equation. Reason: This is Bellman’s equation
for a system whose states are the original states
1, . . . , n, together with all the pairs (i, u).
• Value iteration:

Q(i, u) :=

n∑

j=1

pij(u)

(
g(i, u, j) + α min

u′∈U(j)
Q(j, u′)

)
, ∀ (i, u)



Q-LEARNING II

• Use any probabilistic mechanism to select se-
quence of pairs (ik, uk) [all pairs (i, u) are chosen
infinitely often], and for each k, select jk accord-
ing to pikj(uk).
• At each k, Q-learning algorithm updates Q(ik, uk)
according to

Q(ik, uk) :=
(
1 − γk(ik, uk)

)
Q(ik, uk)

+ γk(ik, uk)

(
g(ik, uk, jk) + α min

u′∈U(jk)
Q(jk, u′)

)

• Stepsize γk(ik, uk) must converge to 0 at proper
rate (e.g., like 1/k).
• Important mathematical point: In the Q-factor
version of Bellman’s equation the order of expec-
tation and minimization is reversed relatively to
the ordinary cost version of Bellman’s equation:

J∗(i) = min
u∈U(i)

n∑

j=1

pij(u)
(
g(i, u, j) + αJ∗(j)

)

• Q-learning can be shown to converge to true/exact
Q-factors (a sophisticated proof).
• Major drawback: The large number of pairs (i, u)
- no function approximation is used.



Q-FACTOR APROXIMATIONS

• Introduce basis function approximation for Q-
factors:

Q̃(i, u, r) = φ(i, u)′r

• We cannot use LSPE/LSTD because the Q-
factor Bellman equation involves minimization/multiple
controls.
• An optimistic version of LSPE(0) is possible:
• Generate an infinitely long sequence {(ik, uk) |
k = 0, 1, . . .}.
• At iteration k, given rk and state/control (ik, uk):
(1) Simulate next transition (ik, ik+1) using the

transition probabilities pikj(uk).

(2) Generate control uk+1 from the minimization

uk+1 = arg min
u∈U(ik+1)

Q̃(ik+1, u, rk)

(3) Update the parameter vector via

rk+1 = arg min
r∈"s

k∑

t=0

(
φ(it, ut)

′r

− g(it, ut, it+1) − αφ(it+1, ut+1)′rk

)2



Q-LEARNING FOR OPTIMAL STOPPING

• Not much is known about convergence of opti-
mistic LSPE(0).

• Major difficulty is that the projected Bellman
equation for Q-factors may not be a contraction,
and may have multiple solutions or no solution.

• There is one important case, optimal stop-
ping, where this difficulty does not occur.

• Given a Markov chain with states {1, . . . , n},
and transition probabilities pij . We assume that
the states form a single recurrent class, with steady-
state distribution vector ξ = (ξ1, . . . , ξn).

• At the current state i, we have two options:
− Stop and incur a cost c(i), or
− Continue and incur a cost g(i, j), where j is

the next state.

• Q-factor for the continue action:

Q(i) =
n∑

j=1

pij

(
g(i, j)+α min

{
c(j), Q(j)

})
∆(FQ)(i)

• Major fact: F is a contraction of modulus α
with respect to norm ‖ · ‖ξ.



LSPE FOR OPTIMAL STOPPING

• Introduce Q-factor approximation

Q̃(i, r) = φ(i)′r

• PVI for Q-factors:

Φrk+1 = ΠF (Φrk)

• LSPE

rk+1 =

(
k∑

t=0

φ(it)φ(it)′
)−1

k∑

t=0

φ(it)
(
g(it, it+1) + α min

{
c(it+1),φ(it+1)′rk

})

• Simpler version: Replace the term φ(it+1)′rk

by φ(it+1)′rt. The algorithm still converges to
the unique fixed point of ΠF (see H. Yu and D.
P. Bertsekas, “A Least Squares Q-Learning Algo-
rithm for Optimal Stopping Problems”).


