MIT OpenCourseWare <http://ocw.mit.edu>

6.013/ESD.013J Electromagnetics and Applications, Fall 2005

Please use the following citation format:

Markus Zahn, Erich Ippen, and David Staelin, *6.013/ESD.013J Electromagnetics and Applications, Fall 2005*. (Massachusetts Institute of Technology: MIT OpenCourseWare). <http://ocw.mit.edu> (accessed MM DD, YYYY). License: Creative Commons Attribution-Noncommercial-Share Alike.

Note: Please use the actual date you accessed this material in your citation.

For more information about citing these materials or our Terms of Use, visit: <http://ocw.mit.edu/terms>

Suggested Reading Assignment: Staelin, Sections 6.1-6.4, 10.1, 10.2, 10.4

Final Exam: Wednesday, Dec. 21, 2005, 1:30-4:30pm.

Problem 11.1

A popular 1-MHz AM radio station in the middle of Kansas has a single transmitting antenna on a flat prairie that radiates 100kW isotropically (equally in all directions) over the upper 2π steradians (i.e., this station has no underground audience.) The matched input impedance (the radiation resistance R_r) of this antenna is ~70 ohms, and it is driven by $V_0 \sin \omega t$ volts at maximum power.

- a) What is V_0 [Volts]?
- b) What is the radiated intensity $I[W/m^2]$ 50 kilometers from this antenna?
- c) What is the maximum power P_r , that can be received from this station by an antenna 50 km away with an effective area $A = 10 \frac{m^2}{2}$

Problem 11.2

A short dipole antenna, 10 cm in length and aligned along the \hat{z} axis, is driven uniformly along its length with a sinusoidal current of peak value 1 amp.

- a) What is the electric field $\overline{E}(r, \theta, t)$ in the far field?
- b) At what frequency would this antenna radiate 1 watt of power?
- c) If a receiver with effective area $A = 0.1$ m^2 needed 10^{-20} watts for successful reception, how far away could it be and still receive signals from the 1 watt dipole? In what direction?

Problem 11.3

An antenna consists of two short dipoles, oriented along the *z*-axis and separated along the *y*-axis by a distance *a*. They are driven in phase, each with a current I_0 and an effective length d_{eff} , $(d_{\text{eff}} \Box \mathcal{A})$, at an angular frequency of ω. (Assume that each antenna radiates as it would in the absence of the other.)

- a) What is the intensity of the radiation in the far field as a function of angle ϕ in the *x*-*y* plane?
- b) For $a = 2\lambda$, at what angles ϕ_{max} and ϕ_{min} is the intensity a relative maximum or zero?

Problem 11.4

A "turnstile" antenna consists of two short Hertzian dipoles driven at an angular frequency ω and oriented at right angles to each other as shown in the figure below. One dipole, oriented along the *x*-axis is driven with a current $\hat{\vec{I}}_1 = \hat{I}_0 \hat{x}$ and the other, oriented along the *y*-axis is driven with $\hat{\vec{I}}_2 = j\hat{I}_0 \hat{y}$. Both have the same effective length d_{eff} .

- a) Find the complex amplitude of the total electric field on the +*z* axis in the far field. (Express your answer in Cartesian coordinates with unit vectors \hat{x} , \hat{y} , and \hat{z} .)
- b) Why is the result of part (a) called left-handed circular polarization (LHCP) for +*z* directed waves along the +*z* axis?
- c) What is the complex amplitude of the magnetic field on the $+z$ axis in the far field?
- d) What is the intensity of the radiation on the *z* axis in the far field?

Hint:
$$
\langle \overline{S} \rangle = \frac{1}{2} \text{Re} \left[\hat{\overline{E}} \times \hat{\overline{H}}^* \right]
$$

Problem 11.5

Sketch the far field radiation patterns in the *x-y* plane for each of the following short dipole antenna arrays. The identical dipoles are directed in either the $+z \otimes$ or $-z \otimes$ directions, as indicated, and the currents have equal amplitudes of ± 1 . In part (b) one current has a phase of $\frac{\pi}{2}$ so that its complex amplitude is *j*. In each case find the angles ϕ corresponding to nulls (ϕ_n) and peaks (ϕ_p). If the peaks are unequal, also evaluate their relative values.

Problem 11.6

Using the format of Problem 11.5 design two-dipole arrays that could produce the far field antenna gain patterns illustrated below. The two dipoles have the same current amplitude but may differ in phase. Find the spacing *a* between the two dipoles and their relative phase that results in the radiation patterns shown in parts $(a) - (c)$.

Cartesian Coordinates (x,y,z):

$$
\nabla \Psi = \hat{x} \frac{\partial \Psi}{\partial x} + \hat{y} \frac{\partial \Psi}{\partial y} + \hat{z} \frac{\partial \Psi}{\partial z}
$$

\n
$$
\nabla \bullet \overline{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}
$$

\n
$$
\nabla \times \overline{A} = \hat{x} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{y} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{z} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)
$$

\n
$$
\nabla^2 \Psi = \frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2}
$$

Cylindrical coordinates (r,φ**,z):**

$$
\nabla \Psi = \hat{r} \frac{\partial \Psi}{\partial r} + \hat{\phi} \frac{1}{r} \frac{\partial \Psi}{\partial \phi} + \hat{z} \frac{\partial \Psi}{\partial z}
$$

\n
$$
\nabla \cdot \overline{A} = \frac{1}{r} \frac{\partial (rA_r)}{\partial r} + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_{z}}{\partial z}
$$

\n
$$
\nabla \times \overline{A} = \hat{r} \left(\frac{1}{r} \frac{\partial A_{z}}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right) + \hat{\phi} \left(\frac{\partial A_{r}}{\partial z} - \frac{\partial A_{z}}{\partial r} \right) + \hat{z} \frac{1}{r} \left(\frac{\partial (rA_{\phi})}{\partial r} - \frac{\partial A_{r}}{\partial \phi} \right) = \frac{1}{r} \det \begin{vmatrix} \hat{r} & r\hat{\phi} & \hat{z} \\ \partial/\partial r & \partial/\partial \phi & \partial/\partial z \\ A_{r} & rA_{\phi} & A_{z} \end{vmatrix}
$$

\n
$$
\nabla^{2} \Psi = \frac{1}{r} \partial (r \partial \Psi) + \frac{1}{r} \partial \Psi = \frac{\partial^{2} \Psi}{\partial \phi} + \frac
$$

$$
\nabla^2 \Psi = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \Psi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \Psi}{\partial \phi^2} + \frac{\partial^2 \Psi}{\partial z^2}
$$

Spherical coordinates (r,θ**,**φ**):**

$$
\nabla \Psi = \hat{r} \frac{\partial \Psi}{\partial r} + \hat{\theta} \frac{1}{r} \frac{\partial \Psi}{\partial \theta} + \hat{\phi} \frac{1}{r \sin \theta} \frac{\partial \Psi}{\partial \phi}
$$
\n
$$
\nabla \cdot \overline{A} = \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta A_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_\phi}{\partial \phi}
$$
\n
$$
\nabla \times \overline{A} = \hat{r} \frac{1}{r \sin \theta} \left(\frac{\partial (\sin \theta A_\phi)}{\partial \theta} - \frac{\partial A_\theta}{\partial \phi} \right) + \hat{\theta} \left(\frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{1}{r} \frac{\partial (r A_\phi)}{\partial r} \right) + \hat{\phi} \frac{1}{r} \left(\frac{\partial (r A_\theta)}{\partial r} - \frac{\partial A_r}{\partial \theta} \right)
$$
\n
$$
= \frac{1}{r^2 \sin \theta} \det \begin{vmatrix} \hat{r} & r\hat{\theta} & r\sin \theta \hat{\phi} \\ \partial / \partial r & \partial / \partial \theta & \partial / \partial \phi \\ A_r & rA_\theta & r\sin \theta A_\phi \end{vmatrix}
$$
\n
$$
\nabla^2 \Psi = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \Psi}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Psi}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 \Psi}{\partial \phi^2}
$$

Fundamentals	
$\overline{f} = q(\overline{E} + \overline{v} \times \mu_0 \overline{H})[N]$ (Force on point charge)	$\overline{E}_{1/7} - \overline{E}_{2/7} = 0$
$\nabla \times \overline{\mathbf{E}} = -\partial \overline{\mathbf{B}}/\partial \mathbf{t}$	$\overline{H}_{1/\!/}-\ \overline{H}_{2/\!/}\ =\overline{J}_s\times \hat{n}$
$\oint_c \overline{E} \cdot d\overline{s} = -\frac{d}{dt} \int_A \overline{B} \cdot d\overline{a}$	$B_{11} - B_{21} = 0$ \hat{n} a
$\nabla \times \overline{H} = \overline{J} + \partial \overline{D}/\partial t$	$\hat{n} \bullet (D_{1\perp} - D_{2\perp}) = \rho_s$ $\downarrow \phi = \text{if } \sigma = \infty$
$\oint_{\alpha} \overline{H} \cdot d\overline{s} = \int_{\Delta} \overline{J} \cdot d\overline{a} + \frac{d}{dt} \int_{\Delta} \overline{D} \cdot d\overline{a}$	
$\nabla \bullet \overline{\mathbf{D}} = \rho \to \int_{\Delta} \overline{\mathbf{D}} \bullet d\overline{\mathbf{a}} = \int_{V} \rho dv$	Electromagnetic Quasistatics
$\nabla \bullet \overline{\mathbf{B}} = 0 \rightarrow \int_{\mathbf{A}} \overline{\mathbf{B}} \bullet d\overline{\mathbf{a}} = 0$	$\overline{E} = -\nabla \Phi(r), \Phi(r) = \int_{V'} (\rho(\overline{r})/4\pi \varepsilon \overline{r}' - \overline{r}) dv'$
$\nabla \bullet \overline{\mathbf{J}} = -\partial \rho / \partial \mathbf{t}$	$\nabla^2 \Phi = \frac{-\rho_f}{\varepsilon}$
\overline{E} = electric field (Vm ⁻¹)	$C = Q/V = Ae/d [F]$
\overline{H} = magnetic field (Am ⁻¹)	$L = \Lambda/I$
\overline{D} = electric displacement (Cm ⁻²)	$i(t) = C dv(t)/dt$
\overline{B} = magnetic flux density (T)	$v(t) = L \frac{di(t)}{dt} = dA/dt$
Tesla (T) = Weber m^2 = 10,000 gauss	$w_e = Cv^2(t)/2$; $w_m = \overline{Li^2(t)/2}$
$p =$ charge density (Cm ⁻³)	$L_{\text{solenoid}} = N^2 \mu A/W$
\bar{J} = current density (Am ⁻²)	$\tau = RC, \tau = L/R$
σ = conductivity (Siemens m ⁻¹)	$\Lambda = \int_A \overline{B} \cdot d\overline{a}$ (per turn)
\bar{J}_s = surface current density (Am ⁻¹)	$KCL: \sum_i I_i(t) = 0$ at node
ρ_s = surface charge density (Cm ⁻²)	$KVL: \sum_i V_i(t) = 0$ around loop
$\varepsilon_o = 8.85 \times 10^{-12}$ Fm ⁻¹	$\overline{Q = \omega_0 w_T}$ / $P_{\rm diss} = \omega_0$ / $\Delta \omega$
$\mu_{o} = 4\pi \times 10^{-7}$ Hm ⁻¹	$\omega_0 = (LC)^{-0.5}$
$c = (\epsilon_0 \mu_0)^{-0.5} \approx 3 \times 10^8$ ms ⁻¹	$\langle V^2(t) \rangle / R = kT$
$e = -1.60 \times 10^{-19}$ C	
$\eta_o \approx 377 \text{ ohms} = (\mu_o/\epsilon_o)^{0.5}$	Electromagnetic Waves
$(\nabla^2 - \mu \varepsilon \partial^2 / \partial t^2) \overline{E} = 0$ [Wave Eqn.]	$(\nabla^2 - \mu \varepsilon \partial^2 / \partial t^2) \overline{E} = 0$ [Wave Eqn.]
$E_y(z,t) = E_{+}(z-ct) + E_{-}(z+ct) = R_e {E_y(z)e^{j\omega t}}$	$(\nabla^2 + k^2) \hat{\vec{E}} = 0$, $\hat{\vec{E}} = \hat{\vec{E}}_e e^{-j\vec{k}\cdot\vec{r}}$
$H_x(z,t) = \eta_o^{-1}[E_+(z-ct)-E_-(z+ct)]$ [or(ωt -kz) or (t-z/c)]	$k = \omega(\mu \varepsilon)^{0.5} = \omega/c = 2\pi/\lambda$
$\int_{\Lambda} (\overline{E} \times \overline{H}) \cdot d\overline{a} + (d/dt) \int_{V} (\varepsilon \overline{E} ^{2}/2 + \mu \overline{H} ^{2}/2) dv$	$k_x^2 + k_y^2 + k_z^2 = k_0^2 = \omega^2 \mu \varepsilon$
$=-\int_{V} \overline{E} \cdot \overline{J}$ dv (Poynting Theorem)	$v_p = \omega/k$, $v_g = (\partial k/\partial \omega)^{-1}$
	$\theta_r = \theta_i$
Media and Boundaries	$\sin \theta_t / \sin \theta_i = k_i / k_t = n_i / n_t$
$\overline{\mathbf{D}}=\epsilon_{_0}\,\overline{\mathbf{E}}+\overline{\mathbf{P}}$	$\theta_c = \sin^{-1}(n_t/n_i)$
$\nabla \bullet \overline{D} = \rho_f, \ \tau = \epsilon / \sigma$	$\theta_B = \tan^{-1} (\varepsilon_t / \varepsilon_i)^{0.5}$ for TM
$\nabla \bullet \varepsilon_{o} \overline{E} = \rho_{f} + \rho_{p}$	$\theta>\theta_c\ensuremath{\Rightarrow}\xspace\hat{\overline{E}}_{\!\scriptscriptstyle{t}}=\hat{\overline{E}}_{\!\scriptscriptstyle{i}}T\overline{e^{\!+\alpha x-jk_z z}}$
$\overline{\nabla \bullet \overline{P}} = -\rho_p, \ \overline{J} = \sigma \overline{E}$	$\overline{k} = \overline{k}' - j\overline{k}''$ $\overline{\Gamma} = \overline{T} - 1$
$\overline{B} = \mu \overline{H} = \mu_0 (\overline{H} + \overline{M})$	
$\varepsilon(\omega) = \varepsilon (1 - \omega_p^2 / \omega^2), \omega_p = (Ne^2 / me)^{0.5}$ (plasma)	$T_{TE} = 2 / (1 + [\eta_i \cos \theta_t / \eta_t \cos \theta_i])$
$\varepsilon_{\text{eff}} = \varepsilon (1 - j\sigma/\omega \varepsilon)$	$T_{TM} = 2 / (1 + [\eta_t \cos \theta_t / \eta_i \cos \theta_i])$

Basic Equations for Electromagnetics and Applications

