
 
 

Signals and Systems: 
 
 
Material for the classes on: 
2/10/06 
2/14/06 
2/16/06 
 
 
 
 The goals of the following three classes are: 
 
Define and explore various types of signals 
Explore the concept of a system and define LTI systems 
Explore time and frequency domain representation of signals 
Review Fourier series/transform. Focus on their physical/practical significance   
Sampling and Nyquist rates. The phenomenon of aliasing. 
Numbering systems 
Conversion between types of signals 
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A signal represents a set of one or more variables and is used to convey the characteristic 
information (or the attributes) of a physical phenomenon. 
 
The world around us is full of signals. Indeed our connection with the world is through 
the various signals that our senses can interpret for their corresponding physical 
phenomena: the human voice, the sounds of nature, the light we see, the heat we feel, are 
all signals.  
The classification of a signal is based on: (1) how is it represented in time and (2) how is 
its amplitude allowed to vary. 
 
There are four basic types of signals based on the above classification. They are: 
 
Continuous time, continuous value. 

• Defined for each instant of time and 
its amplitude may vary 
continuously with time and assume 
any value. 

o Signals from transducers 
o Analog signals 

 
Discrete time, continuous value. 

• Defined at discrete instants of time 
and its amplitude may vary 
continuously with time and assume 
any value 

 
Continuous time, discrete value. 

• Defined for each instant of time and 
its amplitude may assume discrete 
values. 

o Signal is sampled at discrete 
times and the output 
assumes discrete values 

 
Discrete time, discrete value. 

• Defined at discrete instants of time 
and its output may assume discrete 
values 

o Digital signals 
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In general we will use time as the independent variable when we represent a signal. This 
is appropriate in the study of electrical and electronic systems but there are many other 
cases in which signals depend on some other variable. For example, in some engineering 
applications the signal may be the pressure along a pipe or it might be the pressure profile 
on an airplane wing or it might be the temperature profile across the cross section of a 
fuel rod of a nuclear reactor. 
 
In this class we will focus on electrical signals (voltage, current, energy) that vary in 
time. An important class of time-varying signals is the periodic signal. Mathematically, a 
periodic signal ( )x t  is one that satisfies the equation 
 
  (1.1) ( ) ( ), for 1, 2,3,x t x t nT n= + = …
 
Where T  is the period of the signal ( )x t . In our study of electronic systems we will 
encounter periodic signals of various types. Some of the most common are shown 
schematically on Figure 1. 
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Figure 1. (a) sine wave signal, (b) square wave signal, (c) pulse train signal, (d) triangular 
wave signal, (e) sawtooth signal, (f) arbitrary periodic signal with noise – one period 
shown 
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Before proceeding let’s define and calculate some of the most relevant parameters 
describing a signal.. The most frequently encountered signal, the generic sinusoidal 
signal, is given by the function, 
 
 ( ) sin( )x t tω φ= Α +  (1.2) 
 
In the study of electronics we encounter this signal very frequently where x(t) may 
represent a voltage, a current or energy. 
 
The parameters describing the signal of Eq. (1.2) are: A  - the amplitude, ω  - the radian 
frequency, and φ - the phase. 
The radian frequency ω  is given in units of radians/sec and is related to the frequency  

 given in cycles/sec. or Hz by f
 
 2 fω π=  (1.3) 
The period T of the signal is 
 

 1 2T
f

π
ω

= =  (1.4) 

The phase φ  represents a “shift” of the signal relative to origin ( 0)t = . 
Figure 2 illustrates the various parameters just described in a graphical fashion. 
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Figure 2. Sinusoidal signal with a phase of 0 degrees and 60 degrees. 
 
In many applications involving time-varying signals, the relevant measurement 
parameters might be an average values of the signal. The electrical signal delivering the 
standard 120 Volt household electricity is a good example. The household electrical 
signal is a sinusoid with a frequency of either 60 or 50 Hz depending on location. The 
120 Volts correspond to an average value of the signal and not to its amplitude. Figure 3 
shows the typical 120 Volt signal measured at a wall outlet. Note that the amplitude of 
the signal is 170 Volts, not 120 Volts. So where does this number 120 Volts come form? 
It is certainly not a simple average since that would be zero for a signal symmetric about 
zero. 120 Volts is a number which gives an indication of the fluctuations of the signal 
about the average value. It is called the root-mean square value of the signal and as we 
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will see later when we study electrical signals in detail, it is important since it is related to 
energy content of the signal. The root-mean square value of a signal  is defines as ( )V t
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= ∫ t dt  (1.5) 

 
For ( ) cos( )V t tω= ,  is calculated as follows. rmsV
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 (1.6) 

 
For our electricity example, 120 VoltsrmsV =  and thus the amplitude of the 
corresponding sinusoidal signal is 170 Volts as indicated on Figure 3. 
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Figure 3. 120 Volt electrical signal 
 
In some situations certain signals may prevent others from been received and understood. 
For example, our ability to listen to a conversation may be compromised by the engine 
noise of a low flying airplane or a by a passing train. In these situations the signals are 
still transmitted and received by our auditory system but we are unable to extract the 
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useful information contained in them. The signal of interest to us is corrupted by the 
“noise” of the airplane engine. 
 
The signal to noise ratio (SNR)describes the relative amounts of information and noise in 
a signal.  
 

Information in signal
Information in noise

SNR =  

 
Since signals usually have a very wide dynamic range (can vary over many order of 
magnitude) the SNR is given in decibels (dB) defined as follows.  
 

 10( ) 20 log s

n

ASNR dB
A

⎛ ⎞
= ⎜

⎝ ⎠
⎟  (1.7) 

where sA  is the amplitude of the signal and  is the amplitude of the noise. Figure 4 
shows a sinusoidal with various values of SNR 

nA

 

 
SNR=26dB 

 

 
SNR=14dB 

 

 
SNR = -6dB 

 

 
SNR=-10dB 

 
 
 
Figure 4. Signals with noise of various SNR. 
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Systems. 
 
Signals are always associated with one or more systems. For example, a certain system 
may generate the signal while another may operate on it in order to process it or to extract 
relevant information from it. The representation of a system with its associated input and 
output signals is shown on Figure 5. The input signal is also called the excitation signal 
and the output is also called the response signal. The system may thus be represented by 
an operator F which may be designed to perform any desirable operation on the input 
signal ( )x t  resulting in the output signal ( )y t . In electronics, for example, the system 
may be an amplifier where the excitation input voltage  is operated on by the 
operator F to produce the output  with an amplification 

( )inv t
( )outv t A  such that 

 ( ) ( ) ( )in out inv t v t Av t⎯⎯→ =F

 
 

System y(t)x(t)

Input Output   
F y(t)x(t)

 
 

Figure 5. Block diagram of a system 
 
Some common forms of the operator F are shown on the following table. 
 

Integral ( ) ( )x t y t⎯⎯→ ⎯⎯⎯→∫
0

( ) ( )
t

y t x dτ τ= ∫  

Amplifier ( ) ( )x t y tA⎯⎯→ ⎯⎯⎯→  ( ) ( )y t Ax t=  

Multiplier ( ) ( )x t y t⎯⎯→ ⊗ ⎯⎯⎯→  1 2( ) ( ) ( )y t x t x t=  

Adder ( ) ( )x t y t⎯⎯→ ⊕ ⎯⎯⎯→  1 2( ) ( ) ( )y t x t x t= +  
 
 
The characteristics of the System operator F are fundamental in system analysis. We are 
particularly interested in linear, time invariant (LTI) systems. 
 

A linear system is one which is both homogeneous and additive. 
 
A homogeneous system is one for which a scaled input voltage produces an equally 
scaled output voltage. Figure 6 illustrates the principle of homogeneity where  can be 
any constant. 

m

 

F my(t)mx(t)
 

 
Figure 6. Homogeneous system 
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An additive system is one for which, 
 

F y (t)1x (t)1

 

F y (t)2x (t)2

 

F
x (t)+1 x (t)2 y (t)+y1 2(t)

 
 

Figure 7. Demonstration of system additivity. 
 
 
The general definition of a linear system is one that can be homogeneous and additive. 
If  is the response of a system to an input ( )1y t ( )1x t  and ( )2y t  is the response of a 

system to an input ( )2x t  then if the system is linear the response to the signal 
, where  and b are any constants is 1 2( ) ( )ax t bx t+ a 1 2( ) ( )ay t by t+ . This very important 

property of linear systems is called the principle of superposition which we may 
represent mathematically as 
 

  (1.8) 1 2 1 2( ) ( ) ( ) ( )ax t bx t ay t by t+ ⎯⎯→ +F

 
In out study of electronic systems we will make extensive use of this property in order to 
obtain solutions of what seemingly appear difficult problems. 
  
 
A time invariant system is one for which a delay 0τ  in the application of the excitation 
signal (input) results in the same delay in the response signal (output). 
For example if an input signal, ( )x t , to a system described by the operator F results in 

the output  like, ( )y t

 ( ) ( )x t y⎯⎯→F t

0 )

 (1.9) 
 
Then the system is time-invariant if 
 

 0( ) (x t y tτ τ− ⎯⎯→ −F  (1.10) 
 
 
The interconnections between systems is also a very important consideration for their 
overall behavior. In electronic systems special attention is paid to their input and output 
characteristics. When systems are connected together the output characteristics of a 
system must “match” the input characteristics of the system that it connects to. As an 
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example consider two systems representing water storage tanks. The input of the system 
is characterized by its ability to receive a certain flow rate of water. The output represents 
a pump with the capability to supply a certain flow rate of water. The block diagram of 
these interconnected systems is shown on Figure 8. For optimal system operation, the rate 
at which the pump at the output of the system -tank1- supplies the water must be 
compatible with the rate at which the system -tank2- can accept the water.  
In electronics we have an analogy where the input and output characteristics of the 
system refer to the resistance seen by the signals at the input and output of the system. In 
the case of electronics we must “match” the two resistances for optimal operation of the 
electronic system. We will explore these principles in detail as we design and investigate 
electronic devices and systems. 

tank1
y(t)

tank2

Output
of tank1

Input
of tank2

 
 

Figure 8. Block diagram of an interconnected system 
 
In practical systems, the System block indicated on Figure 5 is usually made up of 
various subsystems, components or devices each performing a specific task. In general, 
the components and devices incorporated in a System may themselves be considered as 
subsystems. For example, the block diagram of a digital sound recording system, 
comprised of a microphone, electronics for amplification and filtering, an analog to 
digital converter (ADC), a computer, a digital to analog converter (DAC), an amplifier, 
and a speaker is shown on Figure 9. The dotted rectangle represents the complete system 
which is comprised of various other subsystems. 
 

Input
Sound

Microphone Eletronics ADC

Computer DAC Amplifier

Output
Sound

Analog signal

Digital signal

Speaker

X(t)

Y(t)

V2(t)V1(t) V3(t)

V4(t) V5(t) V6(t)

 
 

Figure 9. Block diagram of sound recording system 
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The microphone is a transducer which may be considered as a system that converts the 
pressure variations in the input signal X(t) to the voltage signal V1(t). In turn V1(t) is 
processed by the electronics module resulting in the signal V2(t). The electronics module 
may perform such operations as amplification, filtering and offsetting. Both signals V1(t) 
and V2(t) are time continuous analog signals. Signal V2(t) is in turn operated by module 
ADC resulting in signal V3(t) which is now a digital signal (discrete time) that may be 
further processed by the computer. 
 
The conversion of the analog signal V2(t) to the digital signal V3(t) involves three very 
important operations: (1) sampling, (2) quantization and (3) encoding. 
Sampling is the process by which the signal values are acquired at discrete points in time. 
This is a non-linear process since information is irrevocably lost. 
Quantization is the process by which the continuum of amplitude values is converted to a 
finite number of values (quantized values). This is a non-linear process since information 
is irrevocably lost. 
Encoding is the process of converting each quantized value to a binary number 
represented by a binary bit pattern. No information is lost in this translation. 
 
 
We will explore these operations in later sections. For now let’s establish the framework 
for signal representation and analysis.
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Time and frequency domain 
 
Physical signals, such as the voltage output of a microphone or the electrical signal 
output of a strain or a pressure gage, are usually represented as function of time. These 
signals may be manipulated (amplified, filtered, offset etc.) in the time domain and many 
applications deal with signals solely in the time domain. 
 
However, it is often convenient and frequently necessary, when signal analysis and 
processing is required, to represent the signal in the frequency domain. A signal in the 
frequency domain shows “how much” of the signal is associated with a certain frequency. 
Figure 10 shows the time domain and the frequency domain representation of a 
sinusoidal signal with a frequency of 1kHz. Since this is a signal with a single frequency 
of 1 kHz, the frequency domain representation of the signal is a single line at a frequency 
of 1kHz. The height of the line at the frequency of 1 kHz corresponds to the magnitude or 
strength of the signal at that frequency. 
  
As another example consider the signal given by the function 
 
 π π= + +x( t ) 1 cos(1000 t ) 2 sin(600 t )  (1.11) 
 
This signal is plotted on Figure 11. The two frequencies present in the resulting signal are 
500Hz and 300Hz.Therefore, in the frequency domain representation only these two 
frequencies contain signal information as shown on Figure 11. Note the strength of the 
signal as represented in the frequency domain. 
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Figure 10. Time and frequency domain representation of a sinusoidal signal. 
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Figure 11. Time and frequency domain representation of the signal 
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π π= + +x( t ) 1 cos(1000 t ) 2 sin(600 t )  
 
Signals may in general contain a large number of frequencies and in this case the 
frequency domain representation of the signal becomes very useful. A signal with large 
variations in its rate of change in the time domain contains proportionally larger number 
of frequencies. Compare the two signals shown on Figure 12. The signal on Figure 12 (a) 
appears to be “smoother” than the signal on Figure 12(b). Indeed the frequency content of 
the signal in 12(b) is higher than that of the signal in 12(a).  
 
In the frequency domain representation of the signals, information exists only at the 
frequencies of the sinusoids comprising the signals. Furthermore the frequency domain 
representation contain details about the relative strength of the various frequency 
components as can be seen by comparing the mathematical expression of the signals to 
their corresponding frequency domain representations. We will explore this concept 
further in the following sections. 
 
In the case of the square wave signal where the slope at the transitions becomes infinite, 
the frequency content of the signal is also infinite. Signals with finite frequency content 
are called band-limited signals. 
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Figure 12. Comparing signals in the frequency and the time domain. 
(a) 1

4( ) 2sin(650(2 ) ) cos(1800(2 ) )x t t tπ π= +  
(b) 1 1

2 4( ) 2sin(600(2 ) ) sin(1800(2 ) ) sin(400(2 ) ) cos(1200(2 ) )x t t t t tπ π π= + + + π  
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The graphical representation of signals in the frequency domain just presented will be 
enhanced by the appropriate mathematical representation of signals in the frequency 
domain. The theory of complex numbers is essential in understanding frequency domain 
representation. In the following section the concepts of Fourier analysis will provide us 
with a very powerful tool for the general transformation of a signal from the time domain 
to the frequency domain and equivalently from the frequency domain to the time domain. 
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Complex number arithmetic: A review 
A complex number may be represented in rectangular form as follows: 
 
  (1.12)Rectangular format of complex numberc a jb= +
 
The number 1j = − . a is the real part of the complex number and b is the imaginary part 
of the complex number. 
 
The complex conjugate of a complex number is obtained by replacing  with . For 
the number given by Eq. (1.12) is c a

j j−
j∗ b= −  

 
The magnitude of the complex number is 
 * 2magnitude ( )( )cc a jb a jb r a b= = + − = = + 2  (1.13)
And the phase is  

 1phase tan b
a

θ − ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (1.14)

 The graphical representation of the complex number in the complex plane is: 
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Euler’s identity is an important relationship in the theory of complex numbers. It states: 
 
 cos sinje jφ φ φ= +  (1.15)
 
From the graphical representation of a complex number and Euler’s identity we may 
represent the complex number in polar form as 
 
  (1.16)(cos sin ) Polar format of complex numberjc r j re θθ θ= + =
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Example: Convert the number 5c 6j= −  to polar form jc re θ= . 

First let’s calculate the magnitude. 2 25 6 25 36 7.81r = + = + =  

The phase is 1 6tan 50.19 5.41 radians
5

oθ − −⎛ ⎞= = − =⎜ ⎟
⎝ ⎠

 

And the complex number in polar form is . 5.417.81 jc e=
The graphical representation of this number is  

 
Example: Convert the number 3jc e

π

=  to rectangular form. 
 
The magnitude of the number is 1 and the phase is π/3. 
The rectangular form is  and thus we need to evaluate  and b . c a jb= + a
From Euler’s identity we know that 3cos cos 1/ 2a r πθ= = =  and 

3sin sin 3 / 2b r πθ= = =  

And the number in rectangular form is 1 3c j= +  
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Impulse Function. A review 
 
In science and engineering there are many examples when an action occurs at an instant 
in time or at certain point in space. For example the force exerted on a baseball when it is 
hit by a bat is of very short duration. Also, the point test used in materials testing applies 
a very localized force on a material. The mathematical representation of this type of 
action is 

 

2

2

2

0
1( )

0

t

t

t

ε

2
ε ε

ε

ε

δ
ε

< −⎧
⎪⎪ τ= − < <⎨
⎪
⎪ >⎩

 (1.17) 

For which we also impose the condition: 
 

 ( ) 1t dtεδ
+∞

−∞
=∫  (1.18) 

 
The function may be thought of as a rectangular pulse of width ε and height 1/ε as shown 
on Figure 13(a). In the limit 0ε → , the height 1/ε increases in such a way that the total 
area is 1. This leads to the definition 
 
 

0
( ) lim ( )t εε

tδ δ
→

=  (1.19) 

 
The function ( )tδ  is called the unit impulse function which is also known as the Dirac 
Delta function or simply as the Delta function. The graphical representation of the Delta 
function is shown on Figure 13(b)  
 

δ(t)

t-ε/2 ε/2

1/ε
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t

δ(t)

1

 
(b) 

 
Figure 13. Delta function (a) visualization and (b) symbol 

 
For a more general representation, the function 0(t t )δ −  represents is shifted Delta 
function and represents an impulse centered at 0t t= . The graphical and mathematical 
representations of this general Delta function is, 
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t

δ(t)

t0  

0

0 0

( ) 1

( ) 0 for

t dt

t t

δ τ

δ τ τ

+∞

−∞
− =

− = ≠
∫  (1.20) 

 
The usefulness of the Delta function results not from what it represents but rather from 
what it can do. The two fundamental properties, and default definitions, of the Delta 
function are: 
 

 022
0( ) j fj fe e dfπ τπ τδ τ τ

∞ −

−∞
− ≡ ∫  (1.21) 

 0( ) ( ) ( )f t t dt f 0δ τ
∞

−∞
− =∫ τ  (1.22) 

 
Equation (1.22) is referred to as the sampling property of the Delta function and it is a 
very important property used extensively in signal analysis. 
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Fourier Transform and the Fourier Series. 
 
 
The Fourier transform (FT) is a mathematical function that transforms a signal from the 
time domain, ( )x t , to the frequency domain, ( )X f . The time to frequency domain 
transformation is given by: 
 

  (1.23) 2( ) ( ) j f tX f x t e dtπ+∞ −

−∞
= ∫

 
Equivalently, the inverse Fourier transform may be used to convert a signal from the 
frequency domain to the time domain as follows: 
 

 2( ) ( ) j f tx t X f e π+∞

−∞
= ∫ df

)
df

 (1.24) 

 
When the Fourier transform is to be expressed in terms of the angular frequency 

 rather than the frequency  (Hz) the conversion is achieved by letting (rad/secω f
2dω π= . Therefore Eqs. (1.23) and (1.24) when written in terms of ω  take the form 

 

  (1.25) ( ) ( ) j tX x t e ωω
+∞ −

−∞
= ∫ dt

 

 1( ) ( )
2

j tx t X e ω dω ω
π

+∞

−∞
= ∫  (1.26) 

 
The Fourier transform is the most used mathematical function in signal processing and 
data analysis. It gives the tools to visualize, by looking into the frequency domain, signal 
characteristics that are not directly observable in the time domain. 
 
An illustrative example is the signal associated with sound. Figure 14(a) shows the 
voltage signal as a function of time corresponding to the sound of the middle C note of a 
piano. The important information of a sound signal is its frequency content. This 
information is revealed when we transform the signal to the frequency domain as shown 
on Figure 14(b). The frequency domain representation of the signal clearly shows us that 
the signal has, besides the fundamental frequency of 261 Hz, additional frequency 
components. These additional frequencies (the harmonics) tell us about the sound 
characteristics of the piano and indeed they are the reason for the richness and the 
uniqueness of each instrument. 
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(a) (b) 
 
Figure 14. (a) the time domain signals of a middle C note  of a piano represented as a 
voltage from a microphone. (b) Fourier transform of the signal represents the same signal 
in the frequency domain. 
 
Before proceeding with the physical and thus the practical significance of FT let’s 
become more familiar with the process by calculating the transform for various practical 
signals. We will look at periodic as well as non-periodic signals. Let’s start with the 
calculation of the Fourier transform of the signal 
 
 0( ) sin( )v t tω=  (1.27) 
 
This is our familiar sine wave characterized by a frequency of 02πω . Since this signal 
represents - by definition - a single frequency, we anticipate that in the frequency domain, 
all information will be contained at that frequency. So let’s proceed with the calculation 
to determine the Fourier transform of  which is given by ( )v t
 

  (1.28) 0( ) sin( ) j tV t ωω ω
∞ −

−∞
= ∫ e dt

 
By using Euler’s identity, Eq. (1.15),  we obtain, 
 

 

( )

0 0

0 0( ) ( )
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2

j t j t
j t

j t j t

e eV e
j

j e e d

ω ω
ω

ω ω ω ω

ω
∞ −

−

−∞

∞ − + − −

−∞

−
=

= −

⌠
⎮
⌡

∫

dt

t

dt

 (1.29) 

 
According to Eq. (1.21), 
 

  (1.30) 0( )
02 ( ) j te ω ωπ δ ω ω

∞ − +

−∞
+ = ∫

And, 
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  (1.31) 0( )
02 ( ) j te ω ωπ δ ω ω

∞ − −

−∞
− = ∫ dt

Therefore, Eq. (1.29) becomes 
 
 [ ]0( ) ( ) ( )V jω π δ ω ω δ ω ω= + − − 0  (1.32) 
 
The graphical representation of ( )V ω  is shown on Figure 15. 
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Figure 15. Fourier transform of a sine wave. 

 
 
Similarly the Fourier transform of the signal 
 
 0( ) cos( )v t tω=  (1.33) 
Is calculated as follows 
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 (1.34) 

 
Figure 16 shows the Fourier transform of the cosine signal. 
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Figure 16. Fourier transform of a cosine wave. 
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The rectangular pulse function given by 
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( )
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x
y x

x
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 (1.35) 

represents another very useful signal in electronics and engineering in general. 
The transform ( )Y ω  of the pulse function is  
 

 
[

[ ]

]
( )

1/ 2

1/ 2
1/ 2

1/ 2

1/ 2 2

0
2

( ) ( )

cos( ) sin( )

sin
2 cos( )

j t

j t

Y y t e dt

e dt

j t

dt

ω

ω

ω

ω

ω

ωτ ω

ωτ

+∞ −

−∞

−

−

−

=

=

= −

= =

∫
∫
∫

∫

dt
 (1.36) 

 
Figure 17 shows the plot of the rectangular function and its Fourier transform. 
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Figure 17. rectangular pulse and its Fourier transform 
 
 
Similarly, the Fourier transform of the shifted rectangular pulse 
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Let’s simplify the above integral by changing variables as 2tξ = − . 
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Unit impulse function 
 
The Fourier transform of the Delta function, given by Eq. (1.20), is  
 

  (1.40) 
0
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∫

 
For  the graphical representation of 0 0t = ( )tδ  and ( )ω∆  is shown on Figure 18. 
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Figure 18. Delta function and its Fourier transform. 
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So now let’s explore further the physical significance of the Fourier transform by 
investigating how the energy content of a signal is represented in the time domain and the 
frequency domain. From fundamental conservation principles we should expect that the 
estimation of global parameter such as energy should be the same regardless of how the 
signal is represented. 
The total energy content of signal ( )x t  is given by 

 

2

2

( )

( ) ( ) where ( ) is the complex conjugate of ( )
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 (1.41) 

 

The expression 
2( )

2
X ω

π
 represents the energy per unit frequency and thus the expression 

21 ( )
2

X dω ω
π

∞

−∞
∫  is the total energy content of the signal ( )X ω  in the frequency 

domain. Therefore we have shown that the Fourier transformation is an energy 
conservation transformation.  
 

 2 1( ) ( )
2

2x t dt X dω ω
π

∞ ∞

−∞ −∞

=∫ ∫  (1.42) 

 
 
This is a very important result since it enables us to extract global signal parameters such 
as energy by looking at either the time or the frequency domain. 
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The Fourier transform results may be presented in a variety of ways. It may be 
represented as: 

• The amplitude: plot the amplitude of the sinusoidal component at the appropriate 
frequency. 

• The RMS amplitude: plot the RMS amplitude of the sinusoidal component at the 
appropriate frequency. 

• Power spectrum: plots values that are proportional to the square of RMS 
amplitude. 

 
The plots of Figure 19 show a sine wave with a frequency of 300 Hz and the 
corresponding frequency domain representation. 
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Figure 19. Sine wave signal and various forms of its frequency domain representation. 
 
 
 
As another example let’s consider the signal shown on Figure 20(a) and its calculated 
Fourier transform on 20(b). From the FT we see that there are three identifiable 
frequency components in our signal: 60 Hz, 300 Hz and 500 Hz. In the laboratory 
environment many systems pick up an undesirable 60 Hz “noise” from fluorescent lights 
and other devices, including wiring, that are powered by a 60 Hz wall power. Our 
example is a simplified but representative case of such a scenario. In order to deal with 
these type of undesirable signals we first have to identify their existence and ascertain 
their relative energy contribution to the signal of interest. The Fourier transform gives the 
tool to make this determination. 
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Figure 20. Signal containing a 60 Hz “noise” and its amplitude spectrum. The composite 

signal is given by 
Hz noise

π π π= + + +��	�

60

x( t ) 1 cos(1000 t ) 2 sin(600 t ) sin(120 t )  

 
 
Summary: 
Some of the fundamental properties of Fourier transform are: 
 
Check all these. 
 Time domain Frequency domain 
Linearity 1 2( ) ( )ax t bx t+  1 2( ) ( )aX bXω ω+  
Product 1 2( ) ( )x t x t  1 2( ) ( )X Xω ω∗  

Differentiation 
( )dx t

dt
 ( )j Xω ω  

Integration ( )
t

x dτ τ
−∞∫  

( ) (0) ( )
2

X
j
ω δ ω
ω

Χ
+  

Time delay ( )x t τ−  ( )je Xωτ ω−  
Frequency shift ( )oj te x tω−  ( )X οω ω−  
Energy conservation 
(Parseval’s theorem) 

2( )x t dt
+∞

−∞∫  21 ( )
2

X dω ω
π
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−∞∫  

Frequency shift ( )oj te x tω−  ( )X οω ω−  

Time scaling ( )x at  
1

2
X

a a
ω

π
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Duality ( )X t  ( )x ω−  
Convolution 1 2( ) ( )x t x t∗  1 2( ) ( )X Xω ω  
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Fourier series and its relation to Fourier transform. 
 
Fourier series is just a special case of Fourier transform. In fact the Fourier series is 
associated with periodic signals, while the Fourier transform is a more general 
representation of non-periodic signals in the frequency domain. 
 
Periodic signal may be represented by a linear combination of sinusoids whose 
frequencies vary by a constant integer value. Since we may also represent a sinusoid with 
complex exponentials, by using Euler’s formula, the functional form of this linear 
combination of complex exponentials is known as the Fourier series of the periodic signal 
and it is given by 

 ( ) jk t
k

k
x t c e ω

+∞

=−∞

= ∑  (1.43) 

 
The coefficients are in general a complex numbers, kc k kc a jbk= + , and are given by 
 

 
2
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T
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kc x t e

T
π
Τ−= ∫ dt  (1.44) 

 
whereT  is the period of ( )x t  and the integration is performed over one period. The 
coefficients  are called the Fourier series coefficients or the spectral coefficients of 
the function 

kc
( )x t  and they represent a measure of how much signal (the strength of the 

signal) there is at each frequency kω . Therefore, the task in determining the Fourier 
series representation of a certain signal is that of determining the complex coefficients 

. kc
If the signal ( )x t  is real then its Fourier series representation is reduced to 

 (0
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∫

∫

∫

…

…

=  (1.46) 

The coefficient  is just the average value of the signal 0a ( )x t . In calculating the integrals 
of Eqs. (1.46) it is useful to keep in mind the orthogonality properties of functions. For 
example 
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As an example let’s calculate the Fourier series of the periodic square wave shown on 
Figure 21. 
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The period of the square w

0 2 /Tω π= . Furthermore
arbitrary. Since the signal
are given by 
 

6.071 Spring 2006, Chani
t(sec)
10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Figure 21. Square wave signal 

ave is T and its frequency, the fundamental frequency, is 
, the duty factor of the signal is defined as, 02df T

τ≡
=
 and it is 

 is an even function of t, the Fourier coefficients b  and a  0k k
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For  we have 0k =

 
0

0

0
0 2Aa dt A

T T

τ

τ

τ

−

= =∫  (1.49) 

where  is the average value of the signal.  0a
The Fourier series of the square wave is  
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 (1.50) 

 
 
Let’s consider the case of a 50% duty factor square wave signal, shown on Figure 22(a) 
for which 0 / 4Tτ = . The first 5 non-zero coefficients are:  
 

0 1 3 5 7
4 4 40, , , ,

3 5
a a a a a 4

7π π π
= = = − = = −

π
 

 
Plots (b), - (f) of Figure 22 show the Fourier series representation for a number of 
harmonics, starting with the first and ending with the fifth. As the number of harmonics 
used in the approximation increases the approximation becomes closer and closer to the 
square wave signal. 
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Figure 22. 50% duty factor square wave (a) and its 1st five Fourier harmonics (b) – (f) 
 
For a deeper understanding let’s explore the significance of the coefficients . A plot of 
the magnitude of the coefficients  as a function of  is shown on Figure 23. Each 
value of k  corresponds to a frequency called a harmonic which are integer multiples of 
the frequency of the square wave also called the fundamental frequency. The magnitude 
of the coefficients  is related to the relative strength of the signal at the corresponding 
frequencies. The 

ka

ka k

ka
1
k  dependence of the magnitude is an indication of the relatively “slow” 

rate of  convergence of the series. This implies that a large number of harmonics is 
required in order to reproduce a square wave; a direct consequence of the discontinuities 
associated with the square wave signal. The magnitude plot of the Fourier coefficients is 
directly related to the Fourier transform of the square pulse given by Eq. (1.36). 
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Figure 23. Plot the values 02 sin 2
2k
Aa k

k T
τπ

π
⎛= ⎜
⎝ ⎠

⎞
⎟ 4 as a function of  for k 0 / 1/τ Τ =  

 
It is also instructive to plot the frequency spectrum of the Fourier coefficients  for various 
values of the duty factor 0 /τ Τ . 
Figure 24 shows a plot of  for  ka

0 0 0 0 0 0( ) / 1/ 4, ( ) / 1/12, ( ) / 1/16, ( ) / 1/ 32, ( ) / 1/ 64, ( ) / 1/128a b c d e fτ τ τ τ τ τΤ = Τ = Τ = Τ = Τ = Τ =  
The plot shows the amplitude of   as a function of , the mode number. Our first 
observation is that the frequency spectrum of   has an oscillatory behavior with a 
slowly decreasing envelope. The decrease is proportional to 1/ . 

ka k

ka
k

We also notice that the spacing between these harmonics is a function of the so called 
duty factor. As 0 0τ →  the square wave signal approaches a series of Delta functions. We 
notice that as the pulses become narrower in the time domain the Fourier series 
coefficients is distributed over a wider range in the frequency domain.  
 
Therefore we see that narrow time signals require many harmonics in order to reproduce 
the original signal. Broader time signals require fewer harmonics for the reproduction 
since the amplitude of the higher harmonics tend to decrease more rapidly. In fact as 

0 / 0τ Τ→ , the first crossing of the coefficient goes to ∞  and there is a very broad 
spectrum containing many harmonics which all essentially have the same amplitude. 
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Figure 24. Fourier series coefficients for square waves of various duty factors. 

0 0 0 0 0 0( ) / 1/ 4, ( ) / 1/12, ( ) / 1/16, ( ) / 1/ 32, ( ) / 1/ 64, ( ) / 1/128a b c d e fτ τ τ τ τ τΤ = Τ = Τ = Τ = Τ = Τ =
 
 
At the discontinuities of the signal there are certain important observations to be made. 
First, note that the approximation passes through the average value of the signal. This is 
given by the coefficient  which for the signal used on Figures 25 is zero.  0a
We also observe from the results shown on Figure 25 that the error of the approximation, 

(real signal) - (approximated signal)ε = , shown by the rippled thick solid line in the 
curves of Figure 25, decreases as the number of terms used in the approximation 
increases.  
 
As the number of terms increases the ripple concentrates in the vicinity of the 
discontinuities. Closer observation indicates that, as the number of terms increases, the 
maximum amplitude of the error remains unchanged and its location moves closer and 
closer to the discontinuities. The maximum ripple can be shown to be about 10% of the 
signal value for all finite values of . k
 
The ripple at the discontinuities and its properties just described is called Gibbs 
phenomenon. 
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Figure 25: Gibbs phenomenon 
 
 
 
The FT of any periodic signal is always composed of just impulses. The area of these 
impulses are the FS coefficients for the exponential form.  
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Fourier series expansion of: 
 
Triangular wave. Figure 26. 
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Figure 26.  
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Sawtooth wave Figure 27 
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Figure 27 
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Sampling 
Transducers generate continuous time signals but computers and microprocessors, that 
are used to process these signals, operate at discrete times. These discrete time signals are 
generated by sampling the continuous time signal at regular intervals. 
 
Sampling is thus the process which generates a discrete time signal from a continuous 
time signal.  
 
The fundamental question therefore is how to sample a continuous time signal so that the 
resulting sampled signal retains the information of the original signal. The sampling 
process is depicted graphically on Figure 28. 28(a) shows a signal x(t) and Figure 28(c) 
the corresponding sampled signal sampled at intervals τs. 
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Figure 28. (a) original signal, (b) sampling waveform, (c) resulting discrete time signal 
 
Figure 28(b) depicts the sampling wave form which may be thought of as a series of 
narrow periodic pulses with period sτ . From the analytical perspective these pulses may 
be thought of as delta functions. In practice these are narrow pulses produced by some 
type of clocking device in the circuit of interest. 
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Intuitively we know that in order to reconstruct a certain signal the number of samples 
per period of the sampled signal must be above a certain minimum value. The signals 
shown on Figure 29 are sampled with the same rate. The sampled points are indicated 
with the solid dot. It is intuitively apparent that the plot in 29 (b) is sampled frequently 
enough for reconstruction, while the plot on 29(a) can not be reconstructed with the 
sampled signal. 
 

1

-1

-0.5

0

0.5

Time (s)
0.10 0.02 0.04 0.06 0.08  

(a) 
1

-1

-0.5

0

0.5

Time (s)
0.10 0.02 0.04 0.06 0.08  

(b) 
 

Figure 29. Sampling of a “fast” varying (a) and a “slow” varying (b) signal. 
 
In order to be able to reconstruct the original signal from the sampled signal the 
following two related constraints must be satisfied. 
 

1. The original signal must be band-limited (i.e. must have a finite frequency 
content) 

2. The samples must be taken with a sampling frequency ( 1/ )s sf τ=  which is higher 
than twice the highest frequency ( )Hf  present in the original signal. 

 
These statements form the famous Sampling Theorem or the Nyquist-Shannon 
Sampling Theorem . The critical frequency  (2 )Hf which must be exceeded by the 
sampling frequency is called the Nyquist rate. The frequency ( )Hf that corresponds to 

one-half the Nyquist rate is also called the Nyquist Frequency Nyquist Hf f= . 

 
In terms of the Fourier transform, the original continuous time signal can be recovered 
from the sampled signal if the frequency spectrum of the original signal can be extracted 
from the frequency spectrum of the sampled signal. For a mathematical proof of this 
theorem see Alan Oppenheim, Signals and Systems, Prentice hall or go to the original 
articles.1 
                                                 
1 H. Nyquist, “Certain Topics in  Telegraph Transmission theory,” AIEE Transactions, 1928, p. 617 
C. E. Shannon, “Communication in the presence of noise” Proceedings of IRE, January 1949, pp. 10-21  
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Aliasing 
 
When the sampling frequency is less than twice the bandwidth of a signal the time 
continues signal can not reconstructed from the samples. As we saw in our Fourier series 
analysis when the pulses are spaced further apart in time the Fourier harmonics get closer 
together. At some point there is an overlap of the impulse spectra and reconstruction of 
the original signal becomes impossible. This is called aliasing. 
 
 The mathematics of this is given in the accompanying notes. Here we present an intuitive 
graphical representation of the phenomenon on Figure 30. On Figure 30(a) we see the 
generic Fourier transform of a cosine signal of frequency 0ω . 
On Figure 30(b) we present a scenario where the sampling frequency 04sω ω= . Note 
now that the frequency of interest 0ω  remains within the rectangle defined by the / 2sω  
regions. 
Figure 30(c) shows another case for which 05 / 2sω ω= . Here again the frequency of 
interest remains within the rectangle defined by the / 2sω  regions. 
Finally on Figure 30(d) 03 / 2sω ω=  the frequency 0ω  has moved outside the / 2sω  
regions. In the / 2sω  regions now appears the lower frequency 0sω ω− . 
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(a) 
 

Χ( ωj )
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(b) 

 
Χ( ωj )

ωω0-ω0 ωs-ωs

ωs/2- /ωs 2

ωs 0-ω- +ωs 0ω  
(c) 

 
Χ( ωj )

ωω0-ω0 ωs-ωs

ωs/2- /ωs 2

ωs 0-ω- +ωs 0ω  
 

(d) 
 

Figure 30. Oversampling and undersampling showing aliasing. (a) transform of the 
cosine wave. (b) sampling the cosine signal with 04sω ω=  (No aliasing). (c) sampling the 
cosine signal with 05 / 2sω ω=  (No aliasing). (d) sampling with 03 / 2sω ω=  (Aliasing) 
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Numbering systems: A review 
 
Before proceeding with the last two steps – quantization and encoding – in the process of 
converting an analog signal to a digital signal let’s review the fundamental rules  that 
govern the representation of numbers in the various numbering systems. We primarily 
interested in the conversion of analog signals to digital signals.  
 
Binary  Code. 
In digital electronics the signals are formed with only two voltage values, HI and LOW, 
or level 1 and level 0 and it is called binary digital signal.2 Therefore, the information 
contained in the digital signal is represented by the numbers 1 and 0. In most digital 
systems the state 1 corresponds to a voltage range from 2V to 5V while the state 0 
corresponds to a voltage range from a fraction of a volt to 1 volts.  
 
Digital operations are performed by creating and operating on binary numbers. Binary 
numbers are comprised of the digits 0 and 1 and are based on powers of 2. 
 
Each digit of a binary number, 0 or 1, is called a bit. Four bits together is a nibble, 8 bits 
is called a byte. (8, 16, 32, 64 bit arrangements are also called words) The left most bit is 
called the Least Significant Bit (LSB) while the rightmost bit is called the Most 
Significant Bit (MSB). The schematic below illustrates the general structure of a binary 
number and the associated labels. 
 
 

N1010  1101 0110 1010
nibble

byte

word

��	�

�����	����


 

MSB LSB 
 
 

                                                 
2 In addition to binary digital systems and its associated binary logic, multivalued logic also exists but we 
will not consider it in our discussion. 
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Binary to Decimal Conversion. 
 
The conversion of a binary number to a decimal number may be accomplished by taking 
the successive powers of 2 and summing for the result. 
 
For example let’s consider the four bit binary number 0101. The conversion to a decimal 
number (base 10) is illustrated below. 

N N N N
3 2 1 0

10

0 1 0 1

0x2 1x2 0x2 1x2

0 4 0 1 =
⇓ ⇓⇓ ⇓

↓ ↓ ↓ ↓
+ + +

+ + + 5

 

 
 
For this four bit binary number the range of powers of 2 goes from 0, corresponding to 
the LSB, to 3, corresponding to the MSB. The number 5 is shown as  to indicate that it 
is a decimal number (power of 10).  

105

 
The signal represented on Figure 31(a) has a value of 5 V at time=6τ. The binary 
representation of that value is 0101 and it is shown on Figure 31(b) replacing Level 4. 
We will see more of this later when we consider the fundamentals of the device which 
converts the analog signal to a digital signal. 
 

2
4
6

8

Signal (V)

Timeτ 2τ   3τ  4τ   5τ   6τ   7τ0  
(a) 

Signal (V)

 Timeτ 2τ  3τ  4τ  5τ   6τ  7τ0
Level 1
Level 2
Level 3

0101
Level 5
Level 6
Level 7

 
(b) 

 
Figure 31. Digitization process. 

 
In the next few examples we will use the subscript 2 to indicate a binary number but the 
subscripts will be omitted after that. 
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Examples: 
 
Verify the Binary to Decimal conversion 
 

2 10

2 10

2 10

2 10

2 1

2 1

1111  = 15
1111 0000  = 240
1111 1111  = 255
1101 1011  = 219
0001 0101 1011  = 347
1001 0101 1011  = 2395

0

0

 

 

Decimal to Binary Conversion. 
 
The conversion of a decimal number to a binary number is accomplished by successively 
dividing the decimal number by 2 and recording the remainder as 0 or 1. Here is an 
example of the conversion of decimal number 125 to binary. 
 

125 62 1
2

62 31 0
2
31 15 1
2

15 7 1
           0111 11012

7 3 1
2
3 1 1
2
1 0 1
2

⎫= + ⎪
⎪
⎪= + ⎪
⎪
⎪= +
⎪
⎪

= + ⎪⎪ ⇒⎬
⎪

= + ⎪
⎪
⎪

= + ⎪
⎪
⎪= + ⎪
⎪
⎪⎭

 

LSB 

MSB 

 
Practice number conversion by verifying the conversions from decimal to binary: 
 
Decimal Binary 
69  0100 0101 
299  0001 0010 1011 
756  0010 1111 0100 
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Representation of fractions and signed numbers. 
 
A fractional number may be represented as a binary fraction by simply extending the 
procedure used in representing integer numbers. For example, 
 
13.7510 = 1101.11002 
 
The procedure is clearly visualized by considering the following mapping 

 
 

 

3 2 1 0 1 2 3 42 2 2 2 2 2 2 2
8 4 2 1 0.5 0.25 0.125 0.0625
1 1 0 1 . 1 1 0 0

13 . 75

− − − −

 
Signed binary numbers may be represented by assigning the MSB to indicate the sign. A 
0 is used to indicate a positive number and a 1 is used to indicate a negative number. 
 
For example, an 8 bit signed binary number represents the decimal numbers from -128  to 
+127. 
 
Two’s complement is used to represent negative numbers. The use of 2’s complement 
simplifies the operation of subtraction since the circuit is only required to perform the 
operation of addition. 
 
The 2’s complement of a binary number is obtained by subtracting each digit of the 
binary number from digit 1. This is equivalent to replacing all 1’s by 0’s and all 0’s by 
1’s. 
Negative numbers of 2’s compliment can then be found by adding 1 to the complement 
of a positive number. 
 
For example, the 2’s complement of the 8 bit binary number 0000 1110 is 
1111 0001 = 1010 
 
The negative number of this 2’s complement representation is 
1111 0110 = -1010 
 
The procedure is outlined in the following 
 

10

10

0 0 0 0 1 0 1 0 binary number (10 )
1 1 1 1 0 1 0 1 2's complement

+ 1
1 1 1 1 0 1 1 0 10−
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The table below shows the 2’s complement representation of a few numbers. Fill in the 
empty spaces. 
 
 

Decimal 2’s complement 
0 0000 0000 
-1 1111 1111 
-2 1111 1110 
-3 1111 1101 
-4 1111 1100 
-10 1111 0110 
-15  
-27  
-80  
-110  
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Quantization and Encoding 
 
Analog to Digital Conversion 
 
The electrical signals (voltage or current) generated by a transducer is an analog signal. 
The amplitude of the signal corresponds to the value of the physical phenomenon that the 
transducer detects. The signal values are continuous in time. 
 
The processing of the signal by a digital system requires the conversion of the analog 
signal to a digital signal. The analog to digital conversion is not a continuous process but 
it happens at discrete time intervals. Furthermore the magnitude of the digital signal at 
the time of conversion corresponds to the magnitude of the analog signal. 
 
The analog to digital converter (ADC) is a device that receives as its input the analog 
signal along with instructions regarding the sampling rate (how often is a conversion 
going to be performed3) and scaling parameters corresponding to the desired resolution of 
the system. The output of the ADC is a binary number at each sampling time. 
 
In the preceding section on Sampling we explored the conditions on the sampling rate.  
 
The following schematic shows the basic structure of an 8 bit ADC. 
 

2
4
6
8

Signal (V)

00
11

 0
01

1

01
01

 1
11

1

0 1
11

 1
00

0

10
10

 0
00

1

11
00

 1
01

0

11
00

 1
00

0

10
00

 0
01

0

01
0 1

 1
01

0

0 1
00

 1
0 0

0LSB

MSB

D0D1D2D3D4D5D6D7

8 Bit ADC

Analog Signal

Reference Voltage

Pulses 1 2 3 4 6 7 85 9

Sampling signal

 
 

The selection of an 8 bit ADC sets the resolution of our conversion and the selection of 
the scale for the analog signal determines the measurement resolution for our ADC. In 
out example the 8 bit ADC implies 28 = 256 different levels within the maximum signal 
range. 

                                                 
3 The sampling frequency must be larger than the highest frequency of the analog signal 
to be converted. In fact as stated by the “Sampling Theorem” The sampling frequency 
must be at greater than 2 times the bandwidth of the input signal. 
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Since we are measuring a voltage with possible values between 0V and 10V, our 8 bit 

ADC is not able to resolve voltages smaller than 8

10
2

mV = 39mV. 

If our ADC has a resolution of 16 bits, like the one that you have in your laboratory, the 

resolution, for the same measurement range, would be 16

10
2

mV=0.15mV. 

 
The table below summarizes the conversion process 
 

Pulse Signal 
Value Level Binary number 

1 2 
2 256 51

10
=  0011 0011 

2 3.7 
3.7 256 95
10

=  0101 1111 

3 4.7 
4.7 256 120
10

= 0111 1000 

4 6.3 
6.3 256 161
10

=  1010 0001 

5 7.9 
7.9 256 202
10

= 1100 1010 

6 7.8 
7.8 256 200
10

= 1100 1000 

7 5.1 
5.1256 130
10

=  1000 0010 

8 3.5 
3.5 256 90
10

=  0101 1010 
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