

State machines

State machine: Step by step procedure, possibly responding to input.

State machines

Die Hard Transitions:

1. Fill the little jug:	$(b,l) \rightarrow (b,3)$ for $l < 3$
2. Fill the big jug:	$(b,l) \rightarrow (9,l)$ for $b < 9$
3. Empty the little jug:	$(b,l) \rightarrow (b,0)$ for $l > 0$
4. Empty the big jug:	$(b,l) \rightarrow (0,l)$ for $b > 0$

Robot Invariant

So all positions (x, y) reachable by robot have x + y even, but 1 + 0 = 1 is odd.

Therefore (1,0) is not reachable.

lec 7f 1

GCD correct	ness
Example: GCD(414,662)	
= GCD(662, 414)	since rem(414,662) = 414
= GCD(414, 248)	since rem(662,414) = 248
= GCD(248, 166)	since rem(414,248) = 166
= GCD(166, 82)	since $rem(248, 166) = 82$
= GCD(82, 2)	since $rem(166, 82) = 2$
= GCD(2, 0)	since rem $(82,2) = 0$
Return value: 2.	

