Phaseless Interferometry

iHanbury-Brown and Twiss iVisible interferometer at Narrabri, Australia

2/26/01

$$
\left[\text{For } T_{\text{R}} >> T_{\text{A}}, \frac{\mathsf{v}_{\text{o rms}}}{\langle \mathsf{v}_{\text{o}} \rangle} \cong \frac{T_{\text{R}}^2}{T_{\text{A}}^2 \sqrt{2W\tau}}\right]
$$

iOne might (wrongly) think all phase information and structure at λ /D resolution. photodetectors would lose ability to measure source

 $\mathsf{E}\left(\mathsf{\overline{\tau}}_\mathsf{y}\right)$ ll: E \lceil aabb $\rceil = \overline{{\rm a}^2{\rm b}^2} + 2\overline{{\rm ab}}^2$ where ab is $\phi_{\texttt{F}}(\tau_{\texttt{y}})$ here. $\textsf{Recall: } \mathsf{E} \big[\textsf{aabb} \big] \! = \! \textsf{a}^2 \textsf{b}^2 + 2 \textsf{ab}^-,$

Phaseless Recovery of Source Structure

ll: E $\left[\mathsf{aabb}\right] = \overline{{\mathsf{a}}^2\overline{{\mathsf{b}}^2}} + 2\overline{{\mathsf{a}}\overline{{\mathsf{b}}}}^2,$ where $\overline{{\mathsf{a}}{\mathsf{b}}}$ is $\phi_{\underline{{\mathsf{E}}}}$ $\Big($) Recall: E|aabb|=a 2 b 2 + 2ab , where ab is $\phi_{\rm F}$ ($\tau_{\rm y}$) here.

Recall:
$$
\underline{\mathsf{E}}(\mathsf{x}, \mathsf{y}) \leftrightarrow \underline{\mathsf{E}}(\overline{\mathsf{y}})
$$

↓

Purely real if source position, allowing is even function of perfect source reconstruction

 $\left(\begin{matrix} \overline{\mathbf{c}}_{\lambda} \end{matrix}\right)^2 \leftrightarrow \quad \mathsf{R}_{\left[\underline{\mathsf{E}}\left(\begin{matrix} \overline{\mathsf{E}} \end{matrix}\right)\right]^2}\left(\Delta \overline{\mathsf{\Psi}}\right)$ $\Big($ λ R ψ ↓↓ ϕ_{ε} (τ_{λ}) \leftrightarrow R_{μ_{ε} ($\Delta \psi$ $\frac{1}{2}(\overline{\tau}_{\lambda}) \quad \leftrightarrow \quad \boxed{\text{E}(\overline{\psi})}^2 \Rightarrow I(\overline{\psi})$ $\phi_{\varepsilon}(\tau_{\lambda}) \quad \leftrightarrow \quad \mathbf{E}(\psi) \Rightarrow I(\psi)$

↓

Phaseless Interferometer Interpretation: Independent Radiators

2/26/01

Phaseless Interferometer Diffraction-Limited Source

If $\theta \; \tilde{\! \in}\; \theta_{\rm B} \cong \lambda / {\sf D},$ then a and b are ~uncorrelated

Therefore decorrelated if or if $-$ DL/R $\tilde{\ge} \lambda$ or if $\;\; \phi_{\mathbf{S}} \; \tilde{\ge} \; \lambda \slash \mathsf{L} \qquad \quad$ si $\mathsf{D}\theta \mathrel{\tilde{\geq}} \lambda$ nce $\phi_{\mathtt{S}}\cong\mathsf{D}/\mathsf{R}$ since $\theta \cong L/R$

Radar Equation

icross-section for a target scattering isotropically

Radar Scattering Cross-Section

i σ "scattering cross-section" is equivalent capture icross-section for a target scattering isotropically

Note: Corner reflector can have $\sigma >>$ size of target

Biastatic radars:

If target is unresolved, $\mathsf{P}_\mathsf{rec}\varpropto$ 1/ $\mathsf{R}_1^2\mathsf{R}_2^2$ $\mathsf{P}_\mathsf{rec}\ \tilde{\propto}\ \mathsf{1/R}_2^2$ iIf target is resolved by the transmitter,

lNote resolution enhancement: $\mathsf{P}_\mathsf{rec}\propto\mathsf{R}^{-4}\mathsf{G}^2$ where $\mathsf{G}^2\big(\theta\big)$ has) a narrower beam than G $(\theta$) $\epsilon_{\rm rec}\propto$ R $^{-4}$ G 2 where G 2 (θ

 P^2 2/26/01

)

θ

2 G^2

 $\mathsf{G}\big(\theta$

θ

)

θB

Target Scattering Laws

Lec20.4-8 2/26/01

Target Range-Doppler Response

Lec20.4-9 2/26/01

Range-Doppler Response for a CW Pulse

Note north-south ambiguity

Radar Range and Doppler Ambiguity

Professor David H. Staelin Massachusetts Institute of Technology

Lec20.4-11 2/26/01

Optimum CW Pulse Radar Receiver

CW transmitted pulse at $\mathsf{f}_{\circ},$ $power = P(t)$

r(t) (volts) = k $\sqrt{\sigma}\sqrt{\mathsf{P}(\mathsf{t})}\,$ cos $\omega_{\textup{o}}\mathsf{t}$ + m(t) iReceives for point source: \propto √G² ↑ $\propto \sqrt{\mathsf{G}^2}$ etc. Usually Gaussian iwhite noise ↑

A bank of matched filters could test every possible delay, but the output envelope of a single filter matched to the transmitted waveform is equivalent.

Optimum CW Pulse Radar Receiver

Optimum CW Pulse Radar Receiver

$h(t)$	$-\bullet$	$g(t)$	\bullet	$z(t) \propto R_{\sqrt{r}}^2(\tau)$	$R_{\sqrt{p}}^2(\tau)$ is "ambiguity function"
$n(t)$, noise floor	$-\bullet$	$R_{\sqrt{p}}^2(\tau)$ is "ambiguity function"			
$n(t)$, noise floor	$-\bullet$	$-\bullet$	$R_{\sqrt{p}}^2(\tau)$ is "ambiguity function"		
$-\top$	0	$-\top$			
$Ambiguity function$	$Note: The matched filter can operate on the RF signal (as here) or on its detected envelope.$				

Range-Doppler Matched-Filter Receiver

Pulsed CW (Continuous Wave) transmitted signal (e.g.):

Range-Doppler Matched-Filter Receiver

Alternative range-doppler matched filter receiver

Range-Doppler Ambiguity Function

Range-doppler ambiguity function for y(t); Represents point-source response:

 τ (range offset, seconds)

U
1/2T Hz Half-power width in
T seconds; width in Doppler \cong 1/2T Hz $^{\circ}$

Heisenberg uncertainty principle:

t∆f \cong 1 for コけけけけ — or: BT \cong 1 = ti 1/ \cong 1 $=$ \cong ∆t∆f ≅ 1 for コ|||||||| – or: BT ≅ 1 = time-bandwidth product, where $\mathsf{B}\cong$ 1/T Hz here

CW Pulse Radar Response $Z ≌ σ(τ, Δf) * R(τ, Δf)$

Ambiguity function $R(\tau, \Delta f) = z(\tau, \Delta f)$ for point target = "impulse response" for radar.

Therefore $\| z(\tau, \Delta f) = R(\tau, \Delta f) * \sigma_s(\tau, \Delta f)$

where $\sigma_{\rm s}(\tau,\Delta f)$ = target response function

That is: Radar response = (ambiguity function) [∗] (target response)

Note: For good image reconstruction of complex images we are limited largely by T and 1/2T resolution in delay, Doppler

CW Pulse Radar Response – Simple Targets

For a point target, delay and Doppler resolution can achieve ~0.01T and 1/200T, or better, if the SNR is sufficiently high; almost the same is possible for 2 point targets

Pair of point targets

Improved Resolution for Signals with BT>>1

Example:

BT >> 1 for white noise, PRN (pseudo-random noise), binary data with ~BT bits per block

Binary Code Example:

Improved Resolution for BT>>1 Signals

Ambiguity function z(t, $\Delta {\sf f}$) for BT \gg 1:

Design of $s(t)$ cos ωt to yield minimum ambiguity sidelobes iis difficult; trial and error is common design technique.

Lec20.4-22 2/26/01