Synthetic Aperture Radar (SAR)

Basic Concept of SAR: Consider \Rightarrow Angular resolution fixed array $\theta_{\rm B} \cong \lambda/L$ $\bullet\bullet\bullet$ $\overline{v_i(t)}$ Σ Ò

Claim Equivalent to Moving Antenna:

Assumes phase coherence in oscillator during each image

Synthetic Aperture Radar (SAR)

2/26/01

Resolution of "Unfocused" SAR

Reconstruction of image: first select R , x_0 of interest

SAR angular resolution: $\|\theta_{\sf SAR}\| \cong \lambda/{\sf L}_{\sf SAR}\ge \lambda/{\sf R}\theta_{\sf B} =$ $\cong \lambda / \mathsf{D}$. $\geq \lambda /{\sf R}\theta_{\sf R} = {\sf D}/{\sf R}$

Resolution of "Unfocused" SAR

SAR angular resolution: $\theta_\mathsf{SAR} \cong \lambda\, \mathsf{L}_\mathsf{SAR} \geq \lambda\, \mathsf{R}\theta_\mathsf{B} = \mathsf{D}/\mathsf{R}$

Lateral spatial resolution $\, = \theta_\mathsf{SAR} \bullet \mathsf{R} \cong \mathsf{D} \,$ (want small D, large $\theta_{_{\rm B}},$ large L) $\,$ Range resolution \cong cT / 2 2

L, the lateral resolution can be < D. Note: If antenna is steered toward the target, increasing

Then repeat for all R, $\mathsf{x}_{\scriptscriptstyle{0}}$

 \cong λ / D

Phase-Focused SAR

 $\tilde{<}$ 2L 2 / $\lambda =$ 2 λ R 2 / D 2 $\,$ (where L $=$ λ / $\theta_{\sf SAR}$ $=$ λ R / D $\,)$ δ $\stackrel{<}{\sim}$ λ $\tilde{\alpha}$ 2L 2 / λ = 2 λ R 2 / D 2 (where L = λ / θ_{SAR} = λ R / D). iso the target is in the SAR near field, A-1 Phase focusing is required if $\delta\,\tilde{\diamond}\,\lambda/16$, i.e., if R $\stackrel{>}{\scriptstyle\sim}$ 2L $\stackrel{<}{\scriptstyle\sim}$ / λ = 2 λ R $\stackrel{<}{\scriptstyle\sim}$ / D $\stackrel{<}{\scriptstyle\sim}$ (where L = λ / θ

Phase-Focused SAR

Solution: $W(x) \rightarrow \underline{W}$ '(x) with phase correction

PRF must be higher; to reconstruct $\phi(\mathsf{t})$ we need at least 2 samples per phase wrap.

spatial resolution in x ca be less than D, using beamsteering (e.g. a phased array) Note: With phase focusing, L increases and

Also: L.O. phase drift can be corrected if bright point sources exist in scene.

Required Pulse-Repetition Frequency (PRF)

 $W(\psi_X) * I(\psi_X) * E(\psi_X) = \hat{E}(\psi_X)$ $W(x) \bullet I(x) \bullet \hat{E}(x)$ $E(x)$ Observed $*$ $\rm I(\psi_X)*\sf E(\psi_X)=\sf E$ 7 7 7 7 7

= ′ $\mathsf{PRF} = \mathsf{v}\,/\mathsf{L}'$ (e.g., $\mathsf{v} = \mathsf{aircuit}$ velocity). Want $\Delta\psi_\textnormal{X} = \lambda\,/\mathsf{L}' >> \lambda\,/\mathsf{D}, \text{ or } \mathsf{D} >> \mathsf{L}'$ Therefore want PRF \gg v/D

PRF Impacts SAR Swath Width

Don't want echoes to overlap for successive pulses. Therefore let $2(R_{max} - R_{min})/c \leq \left(\frac{1}{PRF}\right) = L'/v_x \ll \frac{D}{v_x}$

Implies that large swath widths require large $\frac{D}{m}$ and yield poorer spatial resolution.

Envelope Delay Focusing

[i.e., for small $\Delta {\sf R}$ (large B)] and large $\theta_{\sf B} {\sf R}_{\sf o}.$ idelay is needed for very high spatial resolution iCompensation for both envelope delay and phase

Lec20.4-9 2/26/01

SAR Intensity Estimates: Speckle

For each SAR pixel, the estimated cross-section is:

 $\hat{\sigma} = \mathsf{K} \bigl| \sum \mathsf{w}\bigl(\mathsf{x}_{_{\mathsf{i}}}\bigr)$ 2 i *J* 느ij i, j $\mathbf{\hat{S}} = \mathsf{K} \mathsf{I} \sum \mathsf{w}(\mathsf{x}, \mathsf{E})$ E_{ij} where $\begin{cases} K = \text{range-dependent constant} \\ i = \text{pulse number} \end{cases}$ j = subscattering index where \cdot

Many subscatters j per pixel

Simplifying:
$$
\hat{\sigma} = \left| \sum_{k=1}^{N} \underline{\epsilon}_{k} \right|^{2} = \left| \sum_{k=1}^{N} a_{k} e^{j(\omega t + \phi_{k})} \right|^{2} = |\underline{r}|^{2}
$$

random variable $\;$ uniformly over 2 π typically $\;$

SAR Intensity Estimates: Speckle

 $\mathsf{E}\Big[\mathsf{r} - \bar{\mathsf{r}}\Big]^2 \cong 2\sigma/3 \neq \mathsf{f}(\mathsf{N})!$ Because we are adding (averaging) phasors, not scalars ≅ Ζσ

 $\approx \frac{2573}{\sqrt{25}} = 0.53$ \Rightarrow $\sigma \!\!\sqrt{n}$ Thus raw SAR images, full spatial resolution, iiation $\lambda = 2\sigma/3$ $Q \cong \frac{1800 \times 1000}{100 \times 1000} = 0.53 \Rightarrow$ very grainy i iity $\sigma\sqrt{\pi/2}$ \triangleq have $\frac{\text{STD deviation}}{\text{mean intensity}} \triangleq \text{Q} \cong \frac{2\sigma/3}{\sigma\sqrt{\pi/2}} = 0.53 \Rightarrow$ very grainy images

Lec20.4-11 $2/26/0$

Reduction of SAR Speckle

Alternate ways to reduce "speckle" by averaging pixel intensities:

1) Blur image by averaging M^2 pixels \Rightarrow Q = 0.53/M (using large $B\tau$ signals yields high resolution, can be smoothed) 2) Average using spatial diversity

Reduction of SAR Speckle

Alternate ways to reduce "speckle" by average pixel intensities:

3) Average using frequency diversity, where each band yields an independent image. Note that the same total bandwidth could alternatively yield more range resolution and pixels for averaging.

Reduction of SAR Speckle

4) Time averaging works only if source varies. For example a narrow swath permits high PRF and an increase in N, but unless the antenna translates more than ~ λR/D between pulses $[R = range, D = pixel width (m)]$, then adjacent pulse returns are correlated.

 $\tilde{}$ $\mathsf{Q}'=\mathsf{S}.\mathsf{D}$./M \cong (1/3)/4 levels = 1/12, versus $\mathsf{Q}\cong$ 1/2. To reduce standard deviation by 6, need N $\leq 6^2$ = 36 looks. In general, reasonably smooth images need > 8 levels, so

Lec20.4-14 2/26/01

Alternative SAR Geometries and Applications

Velocity dispersion within inverse SAR (ISAR) source (e.g., a moving car) can displace its apparent position laterally.

Examples taken from Remote Sensing Principles are Nonetheless Widely Applicable

Linear and Non-Linear Problems Gaussian and Non-Gaussian Statistics

> Professor David H. Staelin Massachusetts Institute of Technology

Linear Estimation: Smoothing and Sharpening

Smoothing reduces image speckle and other noise; sharpening or "deconvolution" increases it.

Sharpening can "de-blur" images, compensating for diffraction or motion induced blurring.

Audio smoothing and sharpening are similar.

Consider antenna response example; we observe:

$$
T_{_{A}}\left(\overline{\psi}_{_{A}}\right)=\frac{1}{4\pi}\int_{4\pi}G\Big(\overline{\psi}_{_{A}}-\overline{\psi}_{_{s}}\Big)T_{_{B}}\Big(\overline{\psi}_{_{s}}\Big)d\Omega_{_{s}}
$$

Linear Estimation: Smoothing and Sharpening

iConsider antenna response example; we observe:

$$
T_A(\overline{\psi}_A) = \frac{1}{4\pi} \int_{4\pi} G(\overline{\psi}_A - \overline{\psi}_s) T_B(\overline{\psi}_s) d\Omega_s
$$

\n
$$
T_A(\overline{\psi}_A) \approx \frac{1}{4\pi} G(\overline{\psi}) * T_B(\overline{\psi}) \text{ (small solid angles)}
$$

\n
$$
\updownarrow \qquad \updownarrow \qquad \updownarrow \qquad \updownarrow
$$

\n
$$
T_A(\overline{f_{\psi}}) = \frac{1}{4\pi} \underline{G}(\overline{f_{\psi}}) \bullet \underline{T}_B(\overline{f_{\psi}})
$$

\n
$$
\uparrow \qquad \uparrow
$$

\nCycles/Radian Antenna Spectral Response
\n
$$
\left[i.e., \underline{G} (f_{\psi_X}, f_{\psi_Y}) = \iint G(\psi_X, \psi_Y) e^{-j2\pi(\psi_X f_{\psi_X} + \psi_Y f_{\psi_Y})} d\psi_X d\psi_Y \right]
$$

Example: Square Uniformly-Illuminated Aperture

Example: Square Uniformly-Illuminated Aperture

 $\hat{T}_{\mathsf{B}}\left(\overline{\mathsf{f}_{\psi}}\right) = \frac{4\pi T_{\mathsf{A}}\left(\overline{\mathsf{f}_{\psi}}\right)}{\underline{\mathsf{G}}\left(\overline{\mathsf{f}_{\psi}}\right)}$ This restores high-frequency of $\left|\overline{\mathsf{f}_{\psi}}_{\chi}\right| > \mathsf{D}/\lambda!$ This restores high-frequency components, but goes to zero for

iindow function W $\left(\overline{\mathsf{f}_{\psi}} \right)$ avoids the singulari The "principal solution" uses a boxcar W(s). $\,$ The window function W (f_w) avoids the singularity.

 P^2 $2/26/0$

Example: Square Uniformly-Illuminated Aperture

Consider the restored (sharpened) image of a point source, $\mathsf{T}_{\mathsf{B}}\left(\overline{\mathsf{\psi}}\right)$ = $\delta\!\left(\overline{\mathsf{\psi}}\right)$: $\frac{1}{\underline{\mathsf{B}}}\left(\mathsf{f}_{\mathsf{t}\mathsf{y}}\right)$ = 1, so $\mathsf{\hat{T}}_{\underline{\mathsf{B}}}\left(\overline{\mathsf{f}}_{\mathsf{y}}\right)$ = 4 $\pi \underline{\mathsf{T}}_{\mathsf{A}}\left(\overline{\mathsf{f}}_{\mathsf{y}}\right)$ W $\left(\overline{\mathsf{f}}_{\mathsf{y}}\right)\middle/ \mathsf{G}\!\left(\overline{\mathsf{f}}_{\mathsf{y}}\right)$ = W $\left(\overline{\mathsf{f}}_{\mathsf{y}}\right)$ since $\mathsf{T}_\mathsf{A}\left(\bar{\mathsf{f}}_\mathsf{W}\right)$ = $\mathsf{G}\!\left(\bar{\mathsf{f}}_\mathsf{W}\right)\mathsf{T}_\mathsf{B}\left(\bar{\mathsf{f}}_\mathsf{W}\right)\!\Big/ \!4\pi$ ˆThen T_R (f_{w}) = 1, so T_R (f_{w}) = $4\pi T_A$ (f_{w}) W (f_{w}) / G (f_{w}) = W (f_{w}),

 $\mathsf{\hat{T}}_\mathsf{B}\left(\overline{\mathsf{\psi}}\right)$ = ˆ T_B (ψ) = 2-D sinc function for a uniformly illuminated rectangular . antenna aperture.

Therefore optimize W (f_w)

Sharpening Noisy Images

Therefore optimize W
$$
(f_{\psi})
$$
:
\nMinimize E $\left[\left| \underline{T}_{B} (f_{\psi}) - \frac{4\pi \underline{W}(f_{\psi})}{G(f_{\psi})} (\underline{T}_{A_{0}} (f_{\psi}) + \underline{N}(f_{\psi})) \right|^{2} \right] \stackrel{\Delta}{=} Q$

$$
\partial Q / \partial W = 0 \text{ yields:}
$$

 $\underline{W}(\overline{f_{\psi}})$

$$
\underline{W}(\overline{f}_{\psi})_{\text{optimum}} = \frac{E\left[\left|\underline{T}_{A_{\text{O}}}\left(\overline{f}_{\psi}\right)\right|^{2} + \frac{1}{2}\underline{T}_{A_{\text{O}}}\left(\overline{f}_{\psi}\right)\underline{N}\left(\overline{f}_{\psi}\right)^{*} + \frac{1}{2}\underline{T}_{A_{\text{O}}}^{*}\left(\overline{f}_{\psi}\right)\underline{N}\left(\overline{f}_{\psi}\right)\right]}{E\left[\left|\underline{T}_{A_{\text{O}}}\left(\overline{f}_{\psi}\right) + \underline{N}\left(\overline{f}_{\psi}\right)\right|^{2}\right]}
$$

 $\left[\underline{\mathsf{T}}_{\mathsf{A}}\underline{\mathsf{N}}\right]$ If $E[T_A N] = 0$, then

$$
\underline{W}_{\text{optimum}}\left(\overline{f}_{\psi}\right) = \frac{1}{E\left[\underline{N}\left(\overline{f}_{\psi}\right)\right]^2\left[\begin{array}{c}\cong\frac{1}{1+\frac{N}{S}}\\1+\frac{1}{1+\frac{N}{S}}\end{array}\right]}
$$

Lec20.4-23 2/26/01

Sharpening Noisy Images

 ${\rm W}_{\rm opt}\big(\overline{\rm f}_{\rm \psi}\big)$ ⇒ wider beam (lower spatial resolution), lower sidelobes.

photographs TV, $\mathsf{T}_\mathsf{A}\left(\overline{\mathsf{v}}_\mathsf{A}\right)$ maps, SAR images, filtered speech, etc. Can be used for restoration of blurred images of all types:

Lec20.4-24 2/26/01