
6.897: Selected Topics in Cryptography

Lectures 9 and 10

Lecturer: Ran Canetti

Highlights of past lectures

Presented two frameworks for analyzing protocols:
• A basic framework:

– Only function evaluation
– Synchronous
– Non-adaptive corruptions
– Modular composition (only non-concurrent)

• A stronger framework (UC):
– General reactive tasks
– Asynchronous (can express different types of synchrony)
– Adaptive corruptions
– Concurrent modular composition (universal composition)

P1

P3
P4

P2

F

P1

P3
P4

P2
S A

Protocol execution:

whether it interacts with:
- A run of π with A
- An ideal run with F and S

Z

Protocol P securely realizes F if:
For any adversary A
There exists an adversary S
Such that no environment Z can tell

ZIdeal process:

Review of the definition:

Lectures 9 and 10

UC Commitment and Zero-Knowledge

•	 Quick review of known feasibility results in the UC
framework.

•	 UC commitments: The basic functionality, Fcom.
•	 Impossiblity of realizing Fcom in the plain model.
•	 Realizing Fcom in the common reference string model.
•	 Multiple commitments with a single string:

–	Functionality Fmcom.
–	Realizing Fmcom.

•	 From UC commitments to UC ZK:
Realizing Fzk in the Fcom-hybrid model.

do

zcyk02]

Questions:

•	 How to write ideal functionalities that
adequately capture known/new tasks?

•	 Are known protocols UC-secure?

(Do these protocols realize the ideal functionalities
associated with the corresponding tasks?)

•	 How to design UC-secure protocols?

Existence results: Honest majority

Multiparty protocols with honest majority:
Thm: Can realize any functionality [C. 01].

(e.g. use the protocols of [BenOr-Goldwasser-Wigderson88,

Rabin-BenOr89,Canetti-Feige-Goldreich-Naor96]).

Two-party functionalities

•	 Known protocols do not work.

(“black-box simulation with rewinding” cannot be used).
•	 Many interesting functionalities (commitment, ZK,

coin tossing, etc.) cannot be realized in plain model.
•	 In the “common random string model” can do:

–	 UC Commitment
[Canetti-Fischlin01,Canetti-Lindell-Ostrovsky-Sahai02,Damgard-Nielsen02,
Damgard-Groth03,Hofheinz-QuedeMueler04].

–	 UC Zero-Knowledge [CF01, DeSantis et.al. 01]

–	 Any two-party functionality [CLOS02,Cramer-Damgard-
Nielsen03]

(Generalizes to any multiparty functionality with any
number of faults.)

UC Encryption and signature

•	 Can write a “digital signature functionality” Fsig. Realizing Fsig
is equivalent to “security against chosen message attacks”
as in [Goldwasser-Micali-Rivest88].

–	 Using Fsig, can realize “ideal certification authorities” and “ideally
authenticated communication”.

•	 Can write a “public key encryption functionality”, Fpke.
Realizing Fpke w.r.t. non-adaptive adversaries is equivalent
to “security against chosen ciphertext attacks (CCA)” as in
[Rackoff-Simon91,Dolev-Dwork-Naor91,…].

–	 Can formulate a relaxed variant of Fpke, that still captures most of the
current applications of CCA security.

–	 What about realizing Fpke w.r.t. adaptive adversaries?
•	 As is, it’s impossible.
•	 Can relax Fpke a bit so that it becomes possible (but still very

complicated) [Canetti-Halevi-Katz04]. How to do it simply?

UC key-exchange and secure channels

• Can write ideal functionalities that capture

Key-Exchange and Secure-Channels.

•	 Can show that natural and practical protocols
are secure: ISO 9798-3, IKEv1, IKEv2,
SSL/TLS,…

•	 What about password-based key exchange?

•	 What about modeling symmetric encryption and
message authentication as ideal functionalities?

UC commitments

The commitment functionality, Fcom

1.	 Upon receiving (sid,C,V,“commit”,x) from
(sid,C), do:

1.	 Record x
2.	 Output (sid,C,V, “receipt”) to (sid,V)
3.	 Send (sid,C,V, “receipt”) to S

2.	 Upon receiving (sid,“open”) from (sid,C), do:

1.	 Output (sid,x) to (sid,V)
2.	 Send (sid,x) to S
3.	 Halt.

Note: Each copy of Fcom is used for a single commitment/decommitment
Only. Multiple commitments require multiple copies of Fcom.

Impossibility of realizing Fcom in the plain model

can be realized:Fcom
–	 By a “trivial” protocol that never generates any output.

(The simulator never lets Fcom to send output to any party.)
–	 By a protocol that uses third parties as “helpers”.

Æ A protocol is:
–	 Terminating, if when run between two honest parties, some

output is generated by at least one party.
–	 Bilateral, if only two parties participate in it.

Theorem: There exist no terminating, bilateral protocols

that securely realize Fcom in the plain real-life model.

(Theorem holds even in the Fauth-hybrid model.)

Proof Idea:

Let P be a protocol that realizes Fcom in the plain model,

and let S be an ideal-process adversary for P, for the
case that the commiter is corrupted.

Recall that S has to explicitly give the committed bit to
Fcom before the opening phase begins. This means that
S must be able to somehow “extract” the committed
value b from the corrupted committer.

However, in the UC framework S has no advantage over a
real-life verifier. Thus, a corrupted verifier can essentialy
run S and extract the committed bit b from an honest
committer, before the opening phase begins, in
contradiction to the secrecy of the commitment.

More precisely, we proceed in two steps:

(I) Consider the following environment Zc and real-life adversary Ac
that controls the committer C:
– Ac is the dummy adversary: It reports to Zc any message received

from the verifier V, and sends to V any message provided by Zc.
– Zc chooses a random bit b, and runs the code of the honest C by

instructing Ac to deliver all the messages sent by C.
Once V outputs “receipt”, Zc runs the opening protocol of C with V, and
outputs 1 if the output bit b’ generated by V is equal to b.

From the security of P there exists an ideal-process adversary Sc
such that IDEALFcom

Sc,,Zc ~ EXECP,Ac,Zc. But:
–	 In the real-life mode, b’, the output of V, is almost always the same as

the bit b that secretly Z chose.
–	 Consequently, also in the ideal process, b’=b almost always.
–	 Thus, the bit b’’ that S provides Fcom at the commitment phase is

almost always equal to b.

(II) Consider the following environment Zv and real-life adversary Av
that controls the verifier V:
– Zv chooses a random bit b, gives b as input to the honest commiter,

and outputs 1 if the adversary output a bit b’=b.
– Av runs Sc. Any message received from C is given to Sc, and any

message generated by Sc is given to C. When Sc outputs a bit b’ to be
given to Fcom, Av outputs b’ and halts.

Notice that the view of Sc when run by Av is identical to its view when
interacting with Zc in the ideal process for Fcom. Consequently,
from part (I) we have that in the run of Zv and Av almost always
b’=b.

However, when Zv interacts with any simulator S in the ideal process
for Fcom, the view of S is independent of b. Thus Zv outputs 1 w.p.
at most ½.

This contradicts the assumption that P securely realizes Fcom.

The common reference string functionality

Functionality Fcrs

(with prescribed distribution D)

1.	 Choose a value r from distribution D, and
send r to the adversary.

2.	 Upon receiving (“CRS”,sid) from party P,
send r to P.

Note: The Fcrs-hybrid model is essentially the “common reference string
model”, as usually defined in the literacture (cf., Blum-Feldman-Micali89).
In particular: An adversary in the Fcrs-hybrid model expects to get the value of
the CRS from the ideal functionality. Thus, in a simulated interaction, the
simulator can choose the CRS by itself (and in particular it can know trapdoor
information related to the CRS).

Theorem: If trapdoor permutation pairs exist then there
exist terminating, bilateral protocols that realize Fcom
in the (Fauth,Fcrs)-hybrid model.

Remarks:

•	 Here we’ll only show the [CF01] construction, that is

based on claw-free pairs of trapdoor permutations.
•	 [DG03] showed that UC commitments imply key

exchange, so no black-box constructions from OWPs
exist.

•	 More efficient constructions based on Paillier’s
assumption exist [DN02, DG03, CS03].

Realizing Fcom in the Fcrs-hybrid model

•	 Roughly speaking, we need to make sure
that the ideal model adversary for Fcom
can:
– Extract the committed value from a corrupted

committer.
– Generate commitments that can be opened in

multiple ways.
– Explain internal state of committer and verifier

upon corruption (for adaptive security).

First attempt

•	 To obtain equivocability:

–	 Let f={f0, f1, f0-1, f1-1} be a claw-free pair of trapdoor

permutations. That is:

• f0, f1 are over the same domain.
•	 Given fi and x it is easy to compute f (x).i
•	 Given fi -1 and x it is easy to compute f -1(x).i
• Given only f0, f1, it is hard to find x0, x1 such that f0 (x0)=f1 (x1).

–	Commitment Scheme:
•	 CRS: f0,f1

• To commit to bit b, choose random x in the domain of f
and send fb(x). To open, send b,x.

-1–	 Simulator chooses the CRS so that it knows the trapdoors f0-1,f1 .
Now can equivocate: find x0,x1 s.t. f0(x0)=f1(x1)=y, send y.

•	 But: Not extractable…

Second attempt

• To add extractability:
–	Let (G,E,D) be a semantically secure encryption scheme.
–	Commitment Scheme:

•	 Let G(k)=(e,d). CRS: f0,f1, e.

•	 To commit to a bit b, choose random x,r, and send fb(x),Ee(r,x).
To open, send b,x,r.

– Simulator knows choose the CRS such that it knows the
decryption key d. So it can decrypt and extract b.

• But: lost equivocability…

Third attempt

• To restore equivocability:
– Scheme:

• CRS: f0,f1, e

• To commit to b:
– choose random x,r0,r1

– send fb(x),Ee(rb,x),Ee(r1-b,0)

• To open, send b,x,rb. (Don’t send r1-b.)
– To extract, simulator decrypts both encryptions and

finds x.
– To equivocate, simulator chooses x0,x1,r0,r1, such

that f0(x0)=f1(x1)=y and sends y,Ee(r0,x0),Ee(r1,x1).

The protocol (UCC) for static adversaries

•	 On input (sid,C,V,“commit”,b) C does:
–	Choose random x,r0,r1. Obtain f0,f1, e from Fcrs.

– Compute y= fb(x), cb=Ee(rb,x), c1-b=Ee(r1-b,0), and send
(sid,C,V,y,c0,c1) to V.

•	 When receiving (sid,C,V,y,c0,c1) from C, V outputs
(sid,C,“receipt”,C).

•	 On input (sid,“open”), C does:

–	Send b,x,rb to V.

•	 Having received b,x,r, V verifies that Fb(x)=y and
cb=Ee(r,x). If verification succeeds then output
(“Open”,sid,cid,C,b). Else output nothing.

Proof of security (static case)

Let A be an adversary that interacts with parties running
protocol UCC in the Fcrs-hybrid model.

We construct a simulator S in the ideal process for Fcom
and show that for any environment Z,

IDEALFcom
S,Z ~ EXECucc,A,Z

Simulator S:
•	 Choose a c.f.p. (f0, f1, f0-1, f1-1) and keys (e,d) for the enc. Scheme.
• Run a simulated copy of A and give it the CRS (f0, f1, e).
•	 All messages between A and Z are relayed unchanged.
•	 If the committer C is uncorrupted:

–	 If S is notified by Fcom that C wishes to commit to party V then simulate
for A a commitment from C to V: Choose y, compute x0=f0-1(y),x1= f1-1(y),
c0=Ee(r0,x0), c1=Ee(r1,x1), and send (y, c0, c1) from C to V. When A
delivers this message to V, send “ok” to Fcom.

–	 If S is notified by Fcom that C opened the commitment to value b, then S
simulates for A the opening message (b, xb, rb) from C to V.

•	 If C is corrupted:
–	 If a corrupted C sends a commitment (y, c0, c1) to V, then S decrypts c0 and c1:

•	 If c0 decrypts to x0 where x0=f0-1(y), then send (sid,C,V,“commit”,0) to Fcom.
•	 If c1 decrypts to x1 where x1=f1-1(y), then send (sid,C,V,“commit”,1) to Fcom.

–	 If C sends a valid opening message (b’,x,r) (I.e., x=fb’
-1(y) and cb’=Ee(r,x)),

then S checks whether b’ equals the bit sent to Fcom. If yes, then S sends
(sid, “Open”) to Fcom. Otherwise, S aborts the simulation.

Analysis of S:

Let Z be an environment. define first the following hybrid interaction HYB:
Interaction HYB is identical to IDEALFcom

S,Z, except that when S generates
commitments by uncorrupted parties, it “magically learns” the real bit b,
and then uses real (not fake) commitments. That is, the commitment is
(y, c0, c1) where c1-b=Ee(r1-b,0).

We proceed in two steps:
1.	 Show that EXECucc,A,Z ~ HYB.

This is done by reduction to the security of the claw-free pair.
2.	 Show that HYB ~ IDEALFcom

S,Z.
This is done by reduction to the semantic security of the encryption
scheme.

Step 1: Show that EXECucc,A,Z ~ HYB:

•	 Note that the interactions EXECucc,A,Z and HYB are identical, as long
as the adversary does not abort in an opening of a commitment made
by a corrupted party.

•	 We show that if S aborts with probability p then we can find claws in
(f0, f1) With probability p. That is, construct the following adv. D:

–	 Given (f0, f1), D simulates an interaction between Z and S (running A) when
the c.f.p. in the CRS is (f0, f1). D plays the role of S for Z and A. Since D
sees all the messages sent by Z, it knows the bits committed to be the
uncorrupted parties, and can simulate the interaction perfectly.
Furthermore, whenever S aborts then D finds a claw in (f0, f1): S
aborts if A provides a valid commitment to a bit b and then a valid
opening to 1-b. But in this case A generated a claw!

Step 2: Show that HYB ~ IDEALFcom
S,Z:

Recall that the difference between HYB and IDEALFcom
S,Z is that in HYB

the commitments generated by S are real, whereas in IDEALFmcom
S,Z

these commitments are fake.
Assume an env. Z and adv. A that distinguish between the two interactions.

Construct an adversary B that breaks the semantic security of (E,D):
Given encryption key e, B simulates an interaction between Z and S (running

A) when the encryption key in the CRS is e. B plays the role of S for Z
and A. Furthermore, When S needs to generates a commitment
(y, c0, c1), B does:

•	 Cb is generated honestly as cb=Ee(rb,xb). (Recall, B knows b.)
•	 B asks its encryption oracle to encrypt one out of (0, x1-b) and sets the

answer C* to be c1-b.
Analysis of B:
• If C*=E(0) then the simulated Z sees an HYB interaction.
• If C*=E(x1-b) then the simulated Z sees an IDEALFcom

S,Z interaction.

Since Z distinguishes between the two, B breaks the semantic security of the
encryption scheme.

Dealing with adaptive adversaries

Recall the protocol (UCC) for static adversaries

•	 On input (sid,C,V,“commit”,b) C does:
–	 Choose random x,r0,r1. Obtain f0,f1, e from Fcrs.
–	 Compute y= fb(x), cb=Ee(rb,x), c1-b=Ee(r1-b,0),

and send (sid,C,V,y,c0,c1) to V.

•	 When receiving (sid,C,V,y,c0,c1) from C, V outputs
(sid,C,“receipt”,C).

•	 On input (sid,“open”), C does:

–	 Send b,x,rb to V.

•	 Having received b,x,r, verifies that Fb(x)=y and cb=Ee(r,x).
If verification succeeds then output (“Open”,sid,cid,C,b).
Else output nothing.

Problem: When the committer is corrupted, it needs to present
the randomness r1-b. Now S is stuck…

Solutions:
• Erase r1-b immediately after use inside the encryption.
•	 If do not trust erasures: Use an encryption where ciphertexts

are “pseudorandom”. Then the commitment protocol changes
to:
–	 Choose random x,r0,r1. Obtain f0,f1, e from Fcrs.
–	 Let y= fb(x), cb=Ee(rb,x), c1-b=r1-b, and send (sid,C,V,y,c0,c1) to V.

Simulation changes accordingly.

Note: Secure encryption with pseudorandom ciphertexts exists
given any trapdoor permutation: Use the Goldreich-Levin
HardCore bit.

How to re-use the CRS?

Functionality Fcom handles only a single commitment.
Thus, to obtain multiple commitments one needs

multiple copies of Fcom . When replacing each copy of
Fcom with a protocol P that realizes it in the Fcrs-hybrid
model, one obtains multiple copies of P, which in turn
use multiple independent copies of Fcrs…

•	 Can we realize multiple copies of Fcom using a single
copy of Fcrs?

•	 How to formalize that?

The multi-instance commitment

functionality, Fmcom

1.	 Upon receiving (sid,cid,C,V,“commit”,x) from
(sid,C), do:

1.	 Record (cid,x)
2.	 Output (sid,cid,C,V, “receipt”) to (sid,V)
3.	 Send (sid,cid,C,V, “receipt”) to S

2.	 Upon receiving (sid,cid“open”) from (sid,C), do:

1.	 Output (sid,cid,x) to (sid,V)
2.	 Send (sid,cid,x) to S

How to realize Fmcom?

•	 Trivial solution: Run multiple copies of protocol ucc,
where each copy uses its own copy of Fcrs…

•	 But, can we do it with a single copy of Fcrs?
•	 Does protocol ucc do the job?

Attempt 1: Run as is.
Bad: Adversary can copy commitments.

Attempt 2: Include the committer’s id inside the encryption. I.e., in the
commitment phase compute cb=Ee(rb,C.x), c1-b=Ee(r1-b,C.0).

Bad: Adversary can change the encrypted id inside c0,c1.
Attempt 3: Use CCA2 (“non-malleable”) encryption.

Works…

The protocol (UCMC) for static adversaries

•	 On input (“commit”,V,b,sid,cid) C does:
–	 Choose random x,r0,r1. Obtain f0,f1, e from Fcrs.

(Now e is the encryption key of a CCA2-secure encryption scheme.)
–	 Compute y= fb(x), cb=Ee(rb,C.x), c1-b=Ee(r1-b,C.0), and send

(sid,cid,C,V,y,c0,c1) to V.

•	 When receiving (sid,cid,C,V,y,c0,c1) from C, V outputs (“receipt”,C,sid,cid).

•	 On input (“open”,sid,cid), C does:
–	 Send b,x,rb to V.

•	 Having received b,x,rb, V verifies that Fb(x)=y and cb=Ee(rb,C.x), and that cid
never appeared before in a commitment of C.
If verification succeeds then output (“Open”,sid,cid,C,b).

Else output nothing.

Proof of security (static case)

•	 The simulator S is identical to that of UCC, except that
here it handles multiple commitments and
decommitments.

•	 Analysis of S:
–	Define the same hybrid interaction HYB.
– The proof that EXECucc,A,Z ~ HYB remains essentally the

same, except that here there are many commitments
and decommitments.

– The proof that HYB ~ IDEALFmcom
S,Z is similar in

structure to the proof for the single commitment case,
except that here the reduction is to the CCA security of
the encryption:

Simulator S:
•	 Choose a c.f.p. (f0, f1, f0-1, f1-1) and keys (e,d) for the enc. Scheme.
• Run A and give it the CRS (f0, f1, e).
•	 All messages between A and Z are relayed unchanged.
•	 Commitments by uncorrupted parties:

–	 If S is notified by Fmcom that an uncorrupted C wishes to commit to party
V with a given cid, then simulate for A a commitment from C to V:
Choose y, compute x0=f0-1(y),x1= f1-1(y), y, c0=Ee(r0,C.x0), c1=Ee(r1,C.x1),
and send (y, c0, c1) from C to V. When A delivers this message to V,
send “ok” to Fmcom.

–	 If S is notified by Fmcom that C opened the commitment cid to value b,
then it simulates for A an opening message (b, xb, rb) from C to V.

•	 Commitments by corrupted parties:
–	 If A sends a commitment (cid, y, c0, c1) in the name of a corrupted committer C

to some V, then S decrypts c0. If c0 decrypts to C.x0 where x0=f0-1(y), then let
b=0. Else b=1. Then, send (“commit”,C,V,b,sid,cid) to Fmcom.

–	 If A sends a valid opening message (b’,x,r) for some cid (I.e., x=fb’
-1(y),

cb’=Ee(r,C.x)), and b’=b, then S sends (“Open”,sid,cid) to Fmcom.
If b’ != b, then S aborts the simulation

Analysis of S:

Let Z be an environment. define first the following hybrid interaction HYB:
Interaction HYB is identical to IDEALFmcom

S,Z, except that when S
generates commitments by uncorrupted parties, it “magically learns” the
real bit b, and then uses real (not fake) commitments. That is, the
commitment is (y, c0, c1) where c1-b=Ee(r1-b,C.0).

We proceed in two steps:
1.	 Show that EXECucc,A,Z ~ HYB.

This is done by reduction to the security of the claw-free pair.
2.	 Show that HYB ~ IDEALFmcom

S,Z.
This is done by reduction to the security of the encryption scheme.

Step 1: Show that EXECucc,A,Z ~ HYB:

•	 Note that the interactions EXECucc,A,Z and HYB are identical, as long
as the adversary does not abort in an opening of a commitment made
by a corrupted party.

•	 We show that if S aborts with probability p then we can find claws in (f0,
f1) With probability p. That is, construct the following adv. D:

–	 Given (f0, f1), D simulates an interaction between Z and S (running A) when
the c.f.p. in the CRS is (f0, f1). D plays the role of S for Z and A. Since D
sees all the messages sent by Z, it knows the bits committed to be the
uncorrupted parties, and can simulate the interaction perfectly.
Furthermore, whenever S aborts then D finds a claw in (f0, f1): S
aborts if A provides a valid commitment to a bit b and then a valid
opening to 1-b. But in this case A generated a claw!

Step 2: Show that HYB ~ IDEALFmcom
S,Z:

Recall that the difference between HYB and IDEALFmcom
S,Z is that in HYB

the commitments generated by S are real, whereas in IDEALFmcom
S,Z

these commitments are fake.
Assume a env. Z that distinguishes between the two interactions. Construct a

CCA-adversary B that breaks the security of (E,D). (In fact, B will
interact in a Left-or-Right CCA interaction):

Given encryption key e, B simulates an interaction between Z and S (running
A) when the encryption key the CRS is e. B plays the role of S for Z and
A. Furthermore:

– When S needs to generates a commitment (y, c0, c1), B does:
•	 Cb is generated honestly as cb=Ee(rb,C.xb). (Recall, B knows b.)
•	 B asks its encryption oracle to encrypt one out of (0, C.x1-b) and sets the

answer to be c1-b.
– When A sends a commitment (y, c0, c1), B does:

•	 If either c0 or c1 are test ciphertexts then they can be safely ignored,
since they contain an ID of an uncorrupted party. Else, B asks its
decryption oracle to decrypt, and continues running S.

Note:
•	 If B’s oracle is a “Left” oracle (ie, all the test ciphertexts are encryptions

of ID.0) then the simulated Z sees an HYB interaction.
•	 If B’s oracle is a “Right” oracle (ie, all the test ciphertexts are

encryptions of ID. x1-b) then the simulated Z sees an IDEALFmcom
S,Z

interaction.
Since Z distinguished between the two, B breaks the LR-CCA security of the

encryption scheme.

Dealing with adaptive corruptions

Use the same trick as in the single-commitment case.

Question: How to obtain CCA-secure encryption with p.r.
ciphertexts?
– Cramer-Shoup…
– Use double encryption: E(x)=E’(E”(x)), where:

• E’ is CPA-secure with p.r. ciphertext (e.g., standard
encryption based on hard-core bits of tradoor
permutations).

• E” is CCA-secure.
Note: E is not CCA-secure, but is good enough…

UC Zero-Knowledge from UC commitments

•	 Recall the ZKPoK ideal functionality, Fzk, and the
version with weak soundness, Fwzk.

•	 Recall the Blum Hamiltonicity protocol

•	 Show that, when cast in the Fcom-hybrid model, a

single iteration of the protocol realizes Fwzk.
(This result is unconditional, no reductions or
computational assumptions are necessary.)

•	 Show that can realize Fzk using k parallel copies
of Fwzk.

The ZKPoK functionality Fzk (for relation H(G,h)).

1.	 Receive (sid, P,V,G,h) from (sid,P).
Then:

1.	 Output (sid, P, V, G, H(G,h)) to (sid,V)

2.	 Send (sid, P, V, G, H(G,h)) to S
3.	 Halt.

The weak ZKPoK functionality Fwzk

(for relation H(G,h)).

1.	 Receive (sid, P, V,G,h) from (sid,P).
Then:

1.	 If P is corrupted then:
• Choose b R {0,1} and send to S.
• Obtain a bit b’ and a cycle h’ from S, and replace hh’.

2.	 If H(G,h)=1 or b’=b=1 then set v1. Else v0.

3.	 Output (sid, P, V, G,v) to (sid,V) and to S.
4.	 Halt.

The Blum protocol in the Fcom-hybrid model

(“single iteration”)

Input: sid,P,V, graph G, Hamiltonian cycle h in G.
• PÆ V: Choose a random permutation p on [1..n].

Let bi be the I-th bit in p(G).p. Then, for each i send to

Fcom: (sid.i,P,V,“Commit”,b) .
i

• VÆ P: When getting “receipt”, send a random bit c.

• PÆ V:

If c=0 then send Fcom: (sid.i,“Open”) for all i.
If c=1 then open only commitments of edges in h.

•	 V accepts if all the commitment openings are received from
and in addition:Fcom

– If c=0 then the opened graph and permutation match G

– If c=1, then h is a Hamiltonian cycle.

Claim: The Blum protocol securely realizes Fwzk
H in the

Fcom–hybrid model

Proof sketch: Let A be an adversary that interacts with the
protocol. Need to construct an ideal-process adversary S that
fools all environments. There are four cases:

1.	 A controls the verifier (Zero-Knowledge):
S gets input z’ from Z, and runs A on input z’. Next:
–	 If value from Fzk is (G,0) then hand (G,”reject”) to A.

If value from Fzk is (G,1) then simulate an interaction for V:
•	 For all I, send (sid_i, “receipt”) to A.
•	 If obtain the challenge c from A.
•	 If c=0 then send openings of a random permutation of G to A
•	 If c=1 then send an opening of a random Hamiltonian tour to A.

The simulation is perfect…

2. A controls the prover (weak extraction):
S gets input z’ from Z, and runs A on input z’. Next:

I. Obtain from A all the “commit” messages to Fcom and record the
committed graph and permutation. Send (sid,P,V,G,h=0) to Fwzk.

II. If the bit b obtained from Fwzk is 1 (i.e., Fwzk is going to allow cheating)
then send the challenge c=0 to A.

If b=0 (I.e., no cheating allowed in this run) then send c=1 to A.
III. Obtain A’s opening of the commitments in step 3 of the protocol.

If c=0, all openings are obtained and are consistent with G, then send
b’=1 to Fwzk . If c=0 and some openings are bad or inconsistent with
G then send b’=0 (I.e., no cheating, and V should not accept.)

If c=1 then obtain A’s openings of the commitments to the Hamiltonian
cycle h’. If h’ is a Hamiltonian cycle then send h’ to Fwzk . Otherwise,
send h’=0 to Fwzk .

2. 	 A controls the prover (weak extraction):

Analysis of S:

The simulation is perfect. That is, the joint view of the

simulated A together with Z is identical to their view in
an execution in the Fcom –hybrid model:

–	 V’s challenge c is uniformly distributed.

–	 If c=0 then V’s output is 1 iff A opened all commitments

and the permutation is consistent with G.
–	 If c=1 then V’s output is 1 iff A opened a real Hamiltonian

cycle in G.

3. A controls neither party or both parties: Straightforward.

R
From Fwzk
R to Fzk

A protocol for realizing Fzk
R in the Fwzk

R -hybrid model:
•	 P(x,w): Run k copies of Fwzk

R , in parallel. Send
(x,w) to each copy.

•	 V: Run k copies of Fwzk
R , in parallel. Receive (x ,b)i	 i

from the i-th copy. Then:
– If all x’s are the same and all b’s are the same then

output (x,b).
–	Else output nothing

Analysis of the protocol

Let A be an adversary that interacts with the protocol in the Fwzk

R -hybrid
model. Need to construct an ideal-process adversary S that interacts
with Fzk

R and fools all environments. There are four cases:
1.	 A controls the verifier: In this case, all A sees is the value (x,b) coming

in k times, where (x,b) is the output value. This is easy to simulate:
S obtains (x,b) from TP, gives it to A k times, and outputs whatever A
outputs.

2.	 A controls the prover: Here, A should provide k inputs x1 …xk to the k
copies of Fwzk

R , obtain k bits b1 …bk from these copies of Fwzk
R , and

should give witnesses w1 …wk in return. S runs A, obtains x1 …xk,
gives it k random bits b1 …bk, and obtains w1 …wk. Then:

–	 If all the x’s are the same and all copies of Fwzk
R would accept, then

find a wi such that R(x,w)=1, and give (x,w) to Fzk
R . (If didn’t findi	 i

such wi then fail. But this will happen only if b1 …bk are all 1, and
this occurs with probability 2-k.)

–	 Else give (x,w’) to to Fzk
R , where w’ is an invalid witness.

Analysis of S:

–	 When the verifier is corrupted, the views of Z from both

interactions are identically distributed.
–	 When the prover is corrupted, conditioned on the event

that S does not fail, the views of Z from both interactions
are identically distributed. Furthermore, S fails only if b1

…bk are all 1, and this occurs with probability 2-k.

Note: The analysis is almost identical to the non-concurrent

case, except that here the composition is in parallel.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

