

- Preliminaries and the state of the sta
	- Converting CT to DT
• System modeling
	-
- Discrete time systems
-
- \bullet Continuous time systems
-
-
- Numerical methods

Review Outline **Preliminaries:** converting CT to DT

When converting a DT signal to CT, we can use either zero-order

• Converting CT to DT
\n• System modeling
\n
$$
x_c(t) = \sum_{n=-\infty}^{\infty} x_d[n]b\left(\frac{t-nT}{T}\right)
$$
\n(1)

• Feedback, poles, and fundamental modes where b is a unit square function. Additionally, we can also use a
• Continuous time systems

• Laplace transforms [∞] "^t [−] nT # [∞] "^t [−] nT # ^Z transforms ^x^c (t) = ! ^x^d [n]^a ⁺ ! • ^x^d [ⁿ ⁺ 1]^c (2) ^T ^T

where a and c are the right- and left-sided unit triangles functions, respectively.

Preliminaries: System modeling and a present the Discrete Time Systems

Know the basics: (1) system modeling: spring equations, LRC \parallel The unit sample is given by circuits, leaky tank models; (2) equations solutions: solving difference $\|\cdot\|$
and differential equations: (3) signals: scaling inverting and shifting $\delta[n]$ and differential equations; (3) signals: scaling, inverting and shifting.

• Leaky tank modeling: The leak rate $r(t)$ is proportional to the $\|\cdot\|$ The unit step is given by height of the water in the tank $h(t)$,

$$
\frac{dh(t)}{dt} \propto r_{\rm in}(t) - r_{\rm out}(t) \tag{3}
$$

$$
\frac{dr(t)}{dt} = \frac{r_{\text{in}}(t)}{\tau} - \frac{r_{\text{out}}(t)}{\tau} \tag{4}
$$

- -
	-
	-

Poles, and fundamental modes and Continuous Time Systems

-
- When dealing with a system functional Y/X , use partial fractions to find poles
- $p < -1$, system does not converge, alternating sign
-
- $p \in [0, 1]$, magnitude converges monotonically
- $p > 1$, magnitude diverges monotonically
-

$$
p] = \begin{cases} 1 & n = 0, \\ 0 & \text{otherwise.} \end{cases}
$$
 (5)

n the tank
$$
h(t)
$$
,
\n
$$
\frac{dh(t)}{dt} \propto r_{\text{in}}(t) - r_{\text{out}}(t)
$$
\n(3) (3) (4)

- Given a system function equation $H(s) = AB$, A and B are two systems running in series
- Circuit modeling:

 Given a system function equation $H(s) = A + B$, A and B are

 Capacitor: $V = C dV/dt$

• Capacitor: $V = C dV/dt$
• Inductor: $V = L dI/dt$
• Inductor: $V = L dI/dt$ Inductor: $V = EdI/dt$

Inductor: $V = Ldl/dt$

Inductor: $V = Ldl/dt$

Inductor: $V = IR$:-)

Intervention of the H(s) = feed through transmission $/(1 -$ looptransmision

• resistor:
$$
V = IR
$$
 :-) $H(s) = \text{feed through transmission}/(1 - \text{looptransmission})$ (7)

(Massachusetts Institute of Technology) Quiz I Review March 1, 2010 5 / 15 (Massachusetts Institute of Technology) Quiz I Review March 1, 2010 6 / 15

The unit sample is given by

\n- A pole *p* is the base of a geometric sequence
\n- When dealing with a system functional
$$
Y/X
$$
, use partial
\n
\nWhen dealing with a system functional Y/X , use partial

\n1/2e

\n
$$
\delta(t) = \lim_{\epsilon \to 0} \begin{cases} 1/2\epsilon & t \in [-\epsilon, \epsilon] \\ 0 & \text{otherwise} \end{cases}
$$

The unit step is given by

•
$$
p \in [-1, 0)
$$
, magnitude converges, alternating sign
\n• $p \in [0, 1]$, magnitude converges monotonically
\n
$$
u(t) = \int_{-\infty}^{t} \delta(\lambda) d\lambda = \begin{cases} 1 & t \ge 0, \\ 0 & \text{otherwise.} \end{cases}
$$
 (9)

- Complex poles cause oscillations \parallel The fundamental mode associated with p converges if $Re(p) < 0$ and diverges if $Re(p) > 0$
	- Compared to a DT system, the fundamental mode associated with p converges if p lies within the unit circle

Laplace Transforms

• Defined by

$$
X(s) = \int_{-\infty}^{\infty} x(t) e^{-st} dt
$$
 (10)

- A double-sided LT and its ROC provide a unique system function
- Left-sided signals have left-sided ROCs, and right-sided signals have right-sided ROCs
- The ROC is the intersection of each ROC generated by each pole individually
- Go over problem 3 in homework 3 to review ROCs
- The sifting property of $\delta(t)$

Initial and Final value theorems

$$
f(0) = \int_{-\infty}^{\infty} f(t)\delta(t)dt
$$
 (11)

Laplace Transforms: Properties

Table: Key LT properties

Z Transforms

• Defined by

$$
X(z) = \sum_{n=-\infty}^{\infty} h[n]z^{-n}
$$
 (14)

- ROCs are delimited by circles
	- Inside and outside circles are given by left- and right-sided transforms, respectively.

\n- Initial value theorem: If
$$
x(t) = 0
$$
 for $t < 0$ and $x(t)$ contains no impulses or higher-order singularities at $t = 0$ then
\n

(Massachusetts Institute of Technology) **Quiz I Review** March 1, 2010 9 / 15

$$
x(0^+) = \lim_{s \to \infty} sX(s) \tag{12}
$$

• Final value theorem: If $x(t) = 0$ for $t < 0$ and $x(t)$ has a finite limit as $t \to \infty$ then

$$
x(\infty) = \lim_{s \to 0} sX(s) \tag{13}
$$

MIT OpenCourseWare <http://ocw.mit.edu>

6.003 Signals and Systems Spring 2010

For information about citing these materials or our Terms of Use, visit:<http://ocw.mit.edu/terms>.