Quiz III Review Signals and Systems 6.003

Massachusetts Institute of Technology

April 26th, 2010

(Massachusetts Institute of Technology)

Quiz III Review

April 26th, 2010 1 / 1

Quiz 3 Details

- Date: Wednesday April 28th, 2010
- *Time:* 7.30pm–9.30pm
- Content: (boundaries inclusive)
 - Lectures 1–20
 - Recitations 1–20
 - Homeworks 1–11

Review Outline

- CT Fourier Series
- CT Fourier Transforms
- DT Frequency Response
- DT Fourier Series
- DT Fourier Transforms
- Fourier Relations
- The Impulse Train and Periodic Extension
- Filters

CT Fourier Series

- Periodic signals can be represented by a sum of harmonics
- The integral over one period of a harmonic is equal to zero, except for k=0.

$$\int_{T} e^{jk\omega_0 t} dt = T\delta[k]$$

The "analysis" equation gives us the Fourier coefficients

$$a_k = \frac{1}{T} \int_T x(t) e^{-j\frac{2\pi}{T}kt} dt$$

• The "synthesis" equation reconstructs the periodic signal

$$x(t) = x(t+T) = \sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi}{T}kt}$$

CT Fourier Transform

- The aperiodic extension: *The Fourier series can be generalized* to an aperiodic signal by viewing the signal as a periodic signal with an infinite period.
- The "analysis" equation gives us the Fourier Transform

$$X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

• The "synthesis" equation reconstructs the periodic signal

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

Fourier and Laplace Transform Properties

$$X(j\omega) = X(s)|_{s=j\omega}$$

Property	x(t)	X(s)	$X(j\omega)$
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	$aX_1(j\omega) + bX_2(j\omega)$
Time shift	$x(t-t_0)$	$e^{-st_0}X(s)$	$e^{-j\omega t_0}X(j\omega)$
Time scale	x(at)	$\frac{1}{ a } X\left(\frac{s}{a}\right)$	$\frac{1}{ a } X\left(\frac{j\omega}{a}\right)$
Differentiation	$rac{dx(t)}{dt}$	sX(s)	$j\omega X(j\omega)$
Multiply by t	tx(t)	$-rac{d}{ds}X(s)$	$-\frac{1}{j}\frac{d}{d\omega}X(j\omega)$
Convolution	$x_1(t) * x_2(t)$	$X_1(s) \times X_2(s)$	$X_1(j\omega) \times X_2(j\omega)$

* The form of the Fourier transform and its inverse are very similar. We can therefore use duality to find new transform pairs.

(Massachusetts Institute of Technology)

Quiz III Review

DT Frequency Response

• Similar to the continuous time case, *complex geometrics* are eigenfunctions of DT LTI systems

$$z^{n} \longrightarrow h[n] \longrightarrow H(z) z^{n}$$

$$e^{st} \longrightarrow h(t) \longrightarrow H(s) e^{st}$$

$$\cos(\Omega n) \longrightarrow H(z) \longrightarrow |H(e^{j\Omega})| \cos\left(\Omega n + \angle H(e^{j\Omega})\right)$$

$$H(e^{j\Omega}) = |H(z)|_{z=e^{j\Omega}}$$

• The DT frequency response is equivalent to the z-transform evaluated along the unit circle. It is **periodic** with period 2π .

$$H(e^{j(\Omega+2\pi k)})=H(e^{j\Omega})$$

• The "highest" DT frequency is $\Omega = \pi$

(Massachusetts Institute of Technology)

DT Fourier Series

- Discrete time periodic signals can also be represented by a sum of harmonics
- The "analysis" equation gives us the Fourier coefficients

$$a_k = \frac{1}{N} \sum_{\langle N \rangle} x[n] e^{-j\frac{2\pi}{N}kn}$$

• The "synthesis" equation reconstructs the periodic signal

$$x[n] = x[n+N] = \sum_{\langle N \rangle} a_k e^{j\frac{2\pi}{N}kn}$$

 In the discrete Fourier series there are a finite number of periodic harmonics

DT Fourier Transform

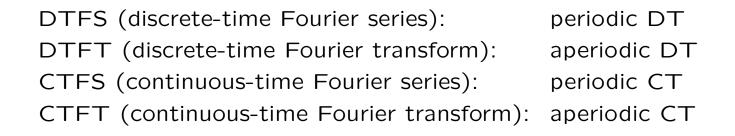
The aperiodic extension of the discrete Fourier series.

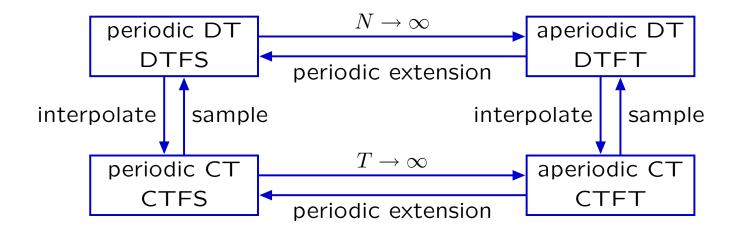
$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$

 $x[n] = rac{1}{2\pi} \int_{2\pi} X(e^{j\Omega})e^{j\Omega n}d\Omega$

Property	x(t)	X(s)	$X(j\omega)$
Linearity	$ax_1(t) + bx_2(t)$	$aX_1(s) + bX_2(s)$	$aX_1(j\omega) + bX_2(j\omega)$
Time shift	$x(t-t_0)$	$e^{-st_0}X(s)$	$e^{-j\omega t_0}X(j\omega)$
Time scale	x(at)	$\frac{1}{ a }X\left(\frac{s}{a}\right)$	$\frac{1}{ a } X\left(\frac{j\omega}{a}\right)$
Differentiation	$\frac{dx(t)}{dt}$	sX(s)	$j\omega X(j\omega)$
Multiply by t	tx(t)	$-rac{d}{ds}X(s)$	$-\frac{1}{j}\frac{d}{d\omega}X(j\omega)$
Convolution	$x_1(t) * x_2(t)$	$X_1(s) \times X_2(s)$	$X_1(j\omega) \times X_2(j\omega)$
chusetts Institute of Technology)	Quiz	III Review	April 26th,

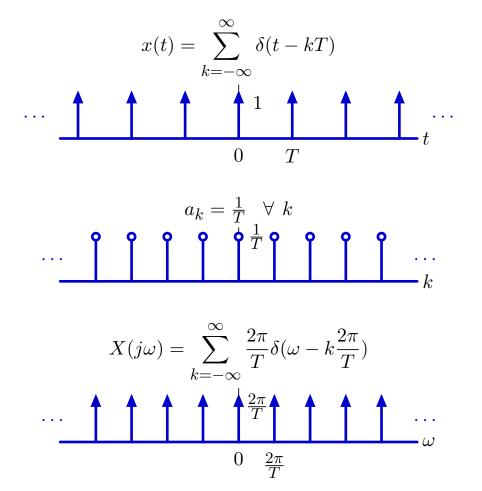
Fourier Relations





Impulse Trains and Periodic Extension

 Periodic extension can be accomplished by convolving a signal with an impulse train. This is equivalent to multiplying by an impulse train in frequency.



(Massachusetts Institute of Technology)

Filters

- Fourier representations allow us to think of systems as filters
- LTI systems cannot create new frequencies
- LTI systems scale the magnitude and shift the phase of existing frequency components.

Good luck on Wednesday! :-)

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.