6.003: Signals and Systems	CT Fourier Transform
CT Fourier Transform	Representing signals by their frequency content.
	$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \qquad (\text{``analysis'' equation})$
	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \qquad (\text{"synthesis" equation})$
	 generalizes Fourier series to represent aperiodic signals. equals Laplace transform X(s) _{s=jω} if ROC includes jω axis. inherits properties of Laplace transform. complex-valued function of real domain ω. simple "inverse" relation more general than table-lookup method for inverse Laplace. "duality." filtering. applications in physics.
April 8, 2010	

Filtering

LTI systems "filter" signals based on their frequency content.

Fourier transforms represent signals as sums of complex exponentials.

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

Complex exponentials are eigenfunctions of LTI systems.

$$e^{j\omega t} \to H(j\omega)e^{j\omega t}$$

LTI systems "filter" signals by adjusting the amplitudes and phases of each frequency component.

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \quad \rightarrow \quad y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} H(j\omega) X(j\omega) e^{j\omega t} d\omega$$

Lecture 17

Filtering Example: Electrocardiogram

In addition to picking up electrical responses of the heart, electrodes on the skin also pick up a variety of other electrical signals that we regard as "noise."

We wish to design a filter to eliminate the noise.

Filtering Example: Electrocardiogram

We can identify the "noise" by breaking the electrocardiogram into frequency components using the Fourier transform.

Lecture 17

interference.

Lecture 17

 $\lim_{D \to 0} \lim_{\theta \to 0} \lim_{\theta$

Lecture 17

Fourier Transforms in Physics: Crystallography

Total light $F(\theta)$ at angle θ is the integral of amount scattered from each part of the target (f(x)) appropriately shifted in phase.

$$F(\theta) = \int f(x)e^{-j2\pi\frac{x\sin\theta}{\lambda}}dx$$

Assume small angles so $\sin \theta \approx \theta$.

Let
$$\omega = 2\pi \frac{\theta}{\lambda}$$
.

Then the pattern of light at the detector is

$$F(\omega) = \int f(x)e^{-j\omega x}dx$$

which is the Fourier transform of f(x) !

Two Dimensions

Demonstration: 2D grating.

An Historic Fourier Transform

Taken by Rosalind Franklin, this image sparked Watson and Crick's insight into the double helix.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Lecture 17

An Historic Fourier Transform

This is an x-ray crystallographic image of DNA, and it shows the Fourier transform of the structure of DNA.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

An Historic Fourier Transform

High-frequency bands indicate repreating structure of base pairs.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

An Historic Fourier Transform

Tilt of low-frequency bands indicates tilt of low-frequency repeating structure: the double helix!

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Simulation

Easy to calculate relation between structure and Fourier transform.

Images removed due to copyright restrictions. Left: double helix drawing. Right: x-ray diffraction image.

Fourier Transform Summary

Represent signals by their frequency content.

Key to "filtering," and to signal-processing in general.

Important in many physical phenomenon: x-ray crystallography.

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.