6.003: Signals and Systems

DT Fourier Representations

April 15, 2010

Mid-term Examination #3

Wednesday, April 28, 7:30-9:30pm.

No recitations on the day of the exam.

Coverage: Lectures 1–20 Recitations 1–20 Homeworks 1–11

Homework 11 will not collected or graded. Solutions will be posted.

Closed book: 3 pages of notes $(8\frac{1}{2} \times 11 \text{ inches}; \text{ front and back}).$

Designed as 1-hour exam; two hours to complete.

Review sessions during open office hours.

Review: DT Frequency Response

The frequency response of a DT LTI system is the value of the system function evaluated on the unit circle.

$$\cos(\Omega n) \longrightarrow H(z) \longrightarrow |H(e^{j\Omega})| \cos\left(\Omega n + \angle H(e^{j\Omega})\right)$$

 $H(e^{j\Omega}) = H(z)|_{z=e^{j\Omega}}$

Comparision of CT and DT Frequency Responses

CT frequency response: H(s) on the imaginary axis, i.e., $s = j\omega$. DT frequency response: H(z) on the unit circle, i.e., $z = e^{j\Omega}$.

Check Yourself

Classify the system ...

$$H(z) = \frac{1 - az}{z - a}$$

Find the frequency response:

$$H(e^{j\Omega}) = \frac{1 - ae^{j\Omega}}{e^{j\Omega} - a} = e^{j\Omega} \frac{e^{-j\Omega} - a}{e^{j\Omega} - a} \stackrel{\leftarrow}{\leftarrow} \frac{\text{complex}}{\text{conjugates}}$$

Because complex conjugates have equal magnitudes, $|H(e^{j\Omega})| = 1$. \rightarrow all-pass filter

Check Yourself

$$x[n] \longrightarrow H(z) = \frac{1-az}{z-a} \longrightarrow y[n]$$

http://public.research.att.com/~ttsweb/tts/demo.php

$$x[n] \longrightarrow H(z) = \frac{1-az}{z-a} \longrightarrow y[n]$$

artificial speech synthesized by Robert Donovan

artificial speech synthesized by Robert Donovan

How are the phases of X and Y related?

Effects of Phase

How are the phases of X and Y related?

$$a_k = \sum_n x[n]e^{-jk\Omega_0 n}$$
$$b_k = \sum_n x[-n]e^{-jk\Omega_0 n} = \sum_m x[m]e^{jk\Omega_0 m} = a_{-k}$$

Flipping x[n] about n = 0 flips a_k about k = 0.

Because x[n] is real-valued, a_k is conjugate symmetric: $a_{-k} = a_k^*$.

$$b_k = a_{-k} = a_k^* = |a_k| e^{-j \angle a_k}$$

The angles are negated at all frequencies.

Review: Periodicity

DT frequency responses are periodic functions of Ω , with period 2π .

If $\Omega_2 = \Omega_1 + 2\pi k$ where k is an integer then

$$H(e^{j\Omega_2}) = H(e^{j(\Omega_1 + 2\pi k)}) = H(e^{j\Omega_1}e^{j2\pi k}) = H(e^{j\Omega_1})$$

The periodicity of $H(e^{j\Omega})$ results because $H(e^{j\Omega})$ is a function of $e^{j\Omega}$, which is itself periodic in Ω . Thus DT complex exponentials have many "aliases."

$$e^{j\Omega_2} = e^{j(\Omega_1 + 2\pi k)} = e^{j\Omega_1}e^{j2\pi k} = e^{j\Omega_1}$$

Because of this aliasing, there is a "highest" DT frequency: $\Omega = \pi$.

Review: Periodic Sinusoids

There are N distinct DT complex exponentials with period N.

If $e^{j\Omega n}$ is periodic in N then $e^{j\Omega n} = e^{j\Omega(n+N)} = e^{j\Omega n}e^{j\Omega N}$

and
$$e^{j\Omega N}$$
 must be 1, and Ω must be one of the N^{th} roots of 1.
Example: $N=8$

Review: DT Fourier Series

DT Fourier series represent DT signals in terms of the amplitudes and phases of harmonic components.

DT Fourier Series

$$a_k = a_{k+N} = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j\Omega_0 n} \quad ; \ \Omega_0 = \frac{2\pi}{N} \quad (\text{``analysis'' equation})$$
$$x[n] = x[n+N] = \sum_{k=\langle N \rangle} a_k e^{jk\Omega_0 n} \quad (\text{``synthesis'' equation})$$

DT Fourier Series

DT Fourier series have simple matrix interpretations.

$$\begin{split} x[n] &= x[n+4] = \sum_{k=<4>} a_k e^{jk\Omega_0 n} = \sum_{k=<4>} a_k e^{jk\frac{2\pi}{4}n} = \sum_{k=<4>} a_k j^{kn} \\ \begin{bmatrix} x[0]\\ x[1]\\ x[2]\\ x[3] \end{bmatrix} &= \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & j & -1 & -j\\ 1 & -1 & 1 & -1\\ 1 & -j & -1 & j \end{bmatrix} \begin{bmatrix} a_0\\ a_1\\ a_2\\ a_3 \end{bmatrix} \\ a_k &= a_{k+4} = \frac{1}{4} \sum_{n=<4>} x[n] e^{-jk\Omega_0 n} = \frac{1}{4} \sum_{n=<4>} e^{-jk\frac{2\pi}{N}n} = \frac{1}{4} \sum_{n=<4>} x[n] j^{-kn} \\ \begin{bmatrix} a_0\\ a_1\\ a_2\\ a_3 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 1 & 1 & 1\\ 1 & -j & -1 & j\\ 1 & -1 & 1 & -1\\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} x[0]\\ x[1]\\ x[2]\\ x[3] \end{bmatrix} \end{split}$$

These matrices are inverses of each other.

Scaling

DT Fourier series are important computational tools.

However, the DT Fourier series do not scale well with the length N.

$$\begin{aligned} a_{k} &= a_{k+2} = \frac{1}{2} \sum_{n=<2>} x[n]e^{-jk\Omega_{0}n} = \frac{1}{2} \sum_{n=<2>} e^{-jk\frac{2\pi}{2}n} = \frac{1}{2} \sum_{n=<2>} x[n](-1)^{-k\pi} \\ \begin{bmatrix} a_{0} \\ a_{1} \end{bmatrix} &= \frac{1}{2} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \end{bmatrix} \\ a_{k} &= a_{k+4} = \frac{1}{4} \sum_{n=<4>} x[n]e^{-jk\Omega_{0}n} = \frac{1}{4} \sum_{n=<4>} e^{-jk\frac{2\pi}{4}n} = \frac{1}{4} \sum_{n=<4>} x[n]j^{-kn} \\ \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \end{bmatrix} &= \frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix} \end{aligned}$$

Number of multiples increases as N^2 .

Fast Fourier "Transform"

Exploit structure of Fourier series to simplify its calculation.

Divide FS of length 2N into two of length N (divide and conquer).

Matrix formulation of 8-point FS:

 $8 \times 8 = 64$ multiplications

Divide into two 4-point series (divide and conquer).

Even-numbered entries in x[n]:

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^0 & W_4^2 \\ W_4^0 & W_4^3 & W_4^2 & W_4^1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix}$$

Odd-numbered entries in x[n]:

$$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^0 & W_4^2 \\ W_4^0 & W_4^3 & W_4^2 & W_4^1 \end{bmatrix} \begin{bmatrix} x[1] \\ x[3] \\ x[5] \\ x[7] \end{bmatrix}$$

Sum of multiplications = $2 \times (4 \times 4) = 32$: fewer than the previous 64.

Break the original 8-point DTFS coefficients c_k into two parts:

$$c_k = d_k + e_k$$

where d_k comes from the even-numbered x[n] (e.g., a_k) and e_k comes from the odd-numbered x[n] (e.g., b_k)

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^0 & W_4^2 \\ W_4^0 & W_4^3 & W_4^2 & W_4^1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix} = \begin{bmatrix} W_8^0 & W_8^0 & W_8^0 & W_8^0 \\ W_8^0 & W_8^2 & W_8^4 & W_8^0 \\ W_8^0 & W_8^6 & W_8^4 & W_8^0 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix}$$

$\lceil d_0 \rceil$		$\lceil W_8^0$	W_8^0	W_8^0	W_8^0	W_8^0	W_8^0	W_8^0	W_{8}^{0} ך	$\lceil x[0] \rceil$
d_1		W_{8}^{0}	W_8^1	W_{8}^{2}	W_{8}^{3}	W_8^4	W_{8}^{5}	W_{8}^{6}	W_8^7	x[1]
d_2		W_{8}^{0}	W_{8}^{2}	W_8^4	W_{8}^{6}	W_8^0	W_{8}^{2}	W_8^4	W_{8}^{6}	x[2]
d_3		W_{8}^{0}	W_{8}^{3}	W_{8}^{6}	W_8^1	W_{8}^{4}	W_{8}^{7}	W_{8}^{2}	W_{8}^{5}	x[3]
d_4	_	W_{8}^{0}	W_8^4	W_8^0	W_8^4	W_8^0	W_8^4	W_8^0	W_8^4	x[4]
d_5		W_{8}^{0}	W_{8}^{5}	W_{8}^{2}	W_{8}^{7}	W_8^4	W_8^1	W_{8}^{6}	W_{8}^{3}	x[5]
d_6		W_{8}^{0}	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	W_8^0	W_{8}^{6}	W_{8}^{4}	W_{8}^{2}	x[6]
$\lfloor d_7 \rfloor$		LW_8^0	W_{8}^{7}	W_{8}^{6}	W_{8}^{5}	W_8^4	W_{8}^{3}	W_{8}^{2}	$W_8^1 ight ceil$	$\lfloor x[7] \rfloor$

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^0 & W_4^2 \\ W_4^0 & W_4^3 & W_4^2 & W_4^1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix} = \begin{bmatrix} W_8^0 & W_8^0 & W_8^0 & W_8^0 \\ W_8^0 & W_8^2 & W_8^4 & W_8^0 \\ W_8^0 & W_8^6 & W_8^4 & W_8^0 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix}$$

$\lceil d_0 \rceil$	ΓW_8^0	W_8^0	W_8^0	W_8^0	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $
d_1	W_8^0	W_8^2	W_8^4	W_{8}^{6}	
d_2	W_8^0	W_8^4	W_8^0	W_8^4	x[2]
d_3	$_{-}$ W_8^0	W_{8}^{6}	W_8^4	W_8^2	
d_4	$ W_8^0$	W_8^0	W_8^0	W_8^0	x[4]
d_5	W_8^0	W_{8}^{2}	W_8^4	W_{8}^{6}	
d_6	W_8^0	W_8^4	W_8^0	W_8^4	x[6]
$\lfloor d_7 \rfloor$	LW_8^0	W_{8}^{6}	W_8^4	W_{8}^{2}	

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^0 & W_4^2 \\ W_4^0 & W_4^3 & W_4^2 & W_4^1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix} = \begin{bmatrix} W_8^0 & W_8^0 & W_8^0 & W_8^0 \\ W_8^0 & W_8^2 & W_8^4 & W_8^0 \\ W_8^0 & W_8^6 & W_8^4 & W_8^0 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix}$$

$\lceil d_0 \rceil$		a_0	$\lceil W_8^0 angle$	W_8^0	W_8^0	W_8^0	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $
d_1		a_1	W_{8}^{0}	W_8^2	W_8^4	W_{8}^{6}	
d_2		a_2	W_8^0	W_8^4	W_8^0	W_8^4	x[2]
d_3		a_3	W_8^0	W_{8}^{6}	W_8^4	W_{8}^{2}	
d_4	—	a_0	W_8^0	W_8^0	W_8^0	W_8^0	x[4]
d_5		a_1	W_8^0	W_{8}^{2}	W_8^4	W_{8}^{6}	
d_6		a_2	W_8^0	W_8^4	W_8^0	W_8^4	x[6]
$\lfloor d_7 \rfloor$		$\lfloor a_3 \rfloor$	LW_8^0	W_{8}^{6}	W_8^4	W_8^2	

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^0 & W_4^2 \\ W_4^0 & W_4^3 & W_4^2 & W_4^1 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix} = \begin{bmatrix} W_8^0 & W_8^0 & W_8^0 & W_8^0 \\ W_8^0 & W_8^2 & W_8^4 & W_8^0 \\ W_8^0 & W_8^6 & W_8^4 & W_8^0 \end{bmatrix} \begin{bmatrix} x[0] \\ x[2] \\ x[4] \\ x[6] \end{bmatrix}$$

$\lceil d_0 \rceil$	$\lceil a_0 \rceil$	$\int W_8^0$	W_8^0	W_8^0	W_8^0	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $
d_1	a_1	W_8^0	W_8^2	W_8^4	W_8^6	
d_2	a_2	W_8^0	W_8^4	W_8^0	W_8^4	x[2]
d_3	a_3	$- W_8^0$	W_8^6	W_8^4	W_8^2	
d_4	$\begin{bmatrix} a_0 \end{bmatrix}$	$- W_8^0$	W_8^0	W_8^0	W_8^0	x[4]
d_5	a_1	W_8^0	W_8^2	W_8^4	W_8^6	
d_6	a_2	W_{8}^{0}	W_8^4	W_8^0	W_8^4	x[6]
$\lfloor d_7 \rfloor$	$\lfloor a_3 \rfloor$	LW_8^0	W_{8}^{6}	W_8^4	W_8^2	

$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ l \end{bmatrix}$	=	$W_4^0 W_4^0 W_4^$	W_{4}^{0} W_{4}^{1} W_{4}^{2} W_{4}^{3}	W_{4}^{0} W_{4}^{2} W_{4}^{0} W_{4}^{2}	$\begin{bmatrix} W_4^0 \\ W_4^3 \\ W_4^2 \\ W_4^2 \end{bmatrix}$	$\begin{bmatrix} x[1] \\ x[3] \\ x[5] \end{bmatrix}^{=}$	$=\begin{bmatrix} W_8^0\\ W_8^0\\ W_8^0\\ W_8^0\\ W_8^0 \end{bmatrix}$	$W_8^0 = W_8^2 = W_8^4 = W_8^$	$W_8^0 = W_8^4 = W_8^0 = W_8^$	$\begin{bmatrix} W_8^0 \\ W_8^6 \\ W_8^4 \\ W_8^4 \end{bmatrix}$	$\begin{bmatrix} x[1] \\ x[3] \\ x[5] \\ [7] \end{bmatrix}$
	L			$VV_{\overline{4}}$					W_8	$W_{\overline{8}}$	$\lfloor x \lfloor l \rfloor \rfloor$
e_0 e_1		$\begin{bmatrix} W_8 \\ W_8 \end{bmatrix}$	W_8^1 W_8^1	W_8^2 W_8^2	W_8^3 W_8^3	W_8^4 W_8^4	W_8^5 W_8^5	W_8^6	W_8^7 W_8^7	$\begin{bmatrix} x[0] \\ x[1] \end{bmatrix}$	
e_2		$\begin{bmatrix} W_8^0 \\ W_2^0 \end{bmatrix}$	W_8^2 W_3^3	W_8^4 W_2^6	W_8^6 W_2^1	W_8^0 W_2^4	$W_8^2 = W_2^7$	$W_8^4 = W_2^2$	$\begin{bmatrix} W_8^6 \\ W_2^5 \end{bmatrix}$	$\begin{array}{c c} x[2] \\ x[3] \end{array}$	
e_4	=	W_8^0	W_8^4	W_8^0	W_8^4	W_8^0	W_8^4	W_8^0	W_8^4	x[0] x[4]	
e5		$\begin{bmatrix} W_8^0 \\ W_0^0 \end{bmatrix}$	W_8^5 W_6^6	W_8^2 W_4^4	W_8^7 W_2^2	W_8^4 W_2^0	W_8^1 W_2^6	$W_8^6 = W_2^4$	$\begin{bmatrix} W_8^3 \\ W_2^2 \end{bmatrix}$	$\left \begin{array}{c} x[5] \\ r[6] \end{array}\right $	
$\begin{bmatrix} c_6\\ e_7 \end{bmatrix}$		$\begin{bmatrix} & v & 8 \\ & W_8^0 \end{bmatrix}$	W_8^7	W_8^6	W_8^5	W_8^4	W_8^3	W_8^2	$\begin{bmatrix} & & 8 \\ & W_8^1 \end{bmatrix}$	$\begin{bmatrix} x \begin{bmatrix} 0 \\ x \begin{bmatrix} 7 \end{bmatrix} \end{bmatrix}$	

$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{bmatrix}$	$= \begin{bmatrix} W_{4}^{0} \\ W_{4}^{0} \\ W_{4}^{0} \\ W_{4}^{0} \\ W_{4}^{0} \end{bmatrix}$	$\begin{array}{ccc} W^0_4 & W^0_4 \\ W^1_4 & W^2_4 \\ W^2_4 & W^0_4 \\ W^3_4 & W^2_4 \end{array}$	$\begin{bmatrix} W_4^0 \\ W_4^3 \\ W_4^2 \\ W_4^1 \end{bmatrix} \begin{bmatrix} x [1] \\ x [3] \\ x [3] \\ x [5] \\ x [7] \end{bmatrix}$	$\begin{bmatrix} V_{8}^{0} \\ W_{8}^{0} \\ W_{8}^{0} \\ W_{8}^{0} \\ W_{8}^{0} \\ W_{8}^{0} \end{bmatrix} = \begin{bmatrix} W_{8}^{0} \\ W_{8}^{0} \\ W_{8}^{0} \end{bmatrix}$	$\begin{array}{ccc} W_8^0 & W_8^0 \\ W_8^2 & W_8^4 \\ W_8^4 & W_8^0 \\ W_8^6 & W_8^4 \end{array}$	$\begin{bmatrix} W_8^0 \\ W_8^6 \\ W_8^4 \\ W_8^2 \end{bmatrix} \begin{bmatrix} x[1] \\ x[3] \\ x[5] \\ x[7] \end{bmatrix}$
$\lceil e_0 \rceil$	Г	W_8^0	W_8^0	W_8^0	W_8^0 ך	ГЛ
e_1		W_8^1	W_8^3	W_8^5	W_8^7	x[1]
e_2		W_8^2	W_8^6	W_8^2	W_8^6	
e_3	_	W_{8}^{3}	W_8^1	W_8^7	W_8^5	x[3]
e_4	_	W_8^4	W_8^4	W_8^4	W_8^4	
e_5		W_8^5	W_8^7	W_8^1	W_{8}^{3}	x[5]
e_6		W_{8}^{6}	W_8^2	W_8^6	W_8^2	
$\lfloor e_7 \rfloor$	L	W_8^7	W_{8}^{5}	W_8^3	W_8^1	$\lfloor x[7] \rfloor$

Combine a_k and b_k to get c_k .

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \\ c_7 \end{bmatrix} = \begin{bmatrix} d_0 + e_0 \\ d_1 + e_1 \\ d_2 + e_2 \\ d_3 + e_3 \\ d_4 + e_4 \\ d_5 + e_5 \\ d_6 + e_6 \\ d_7 + e_7 \end{bmatrix} = \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} + \begin{bmatrix} W_8^0 b_0 \\ W_8^1 b_1 \\ W_8^2 b_2 \\ W_8^3 b_3 \\ W_8^4 b_0 \\ W_8^5 b_1 \\ W_8^6 b_2 \\ W_8^7 b_3 \end{bmatrix}$$

FFT procedure:

- compute a_k and b_k : $2 \times (4 \times 4) = 32$ multiplies
- combine $c_k = a_k + W_8^k b_k$: 8 multiples
- total 40 multiplies: fewer than the orginal $8 \times 8 = 64$ multiplies

Scaling of FFT algorithm

How does the new algorithm scale?

Let M(N) = number of multiplies to perform an N point FFT.

$$M(1) = 0$$

$$M(2) = 2M(1) + 2 = 2$$

$$M(4) = 2M(2) + 4 = 2 \times 4$$

$$M(8) = 2M(4) + 8 = 3 \times 8$$

$$M(16) = 2M(8) + 16 = 4 \times 16$$

$$M(32) = 2M(16) + 32 = 5 \times 32$$

$$M(64) = 2M(32) + 64 = 6 \times 64$$

$$M(128) = 2M(64) + 128 = 7 \times 128$$

 $M(N) = (\log_2 N) \times N$

Significantly smaller than N^2 for N large.

Fourier Transform: Generalize to Aperiodic Signals

An aperiodic signal can be thought of as periodic with infinite period.

Fourier Transform: Generalize to Aperiodic Signals

An aperiodic signal can be thought of as periodic with infinite period. Let x[n] represent an aperiodic signal DT signal.

"Periodic extension":
$$x_N[n] = \sum_{k=-\infty}^{\infty} x[n+kN]$$

Then
$$x[n] = \lim_{N \to \infty} x_N[n].$$

Represent $x_N[n]$ by its Fourier series.

Doubling period doubles # of harmonics in given frequency interval.

As $N \to \infty$, discrete harmonic amplitudes \to a continuum $E(\Omega)$.

As $N \to \infty$, synthesis sum \to integral.

Replacing $E(\Omega)$ by $X(e^{j\Omega})$ yields the DT Fourier transform relations.

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n}$$
$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\Omega})e^{j\Omega n} d\Omega$$

("analysis" equation)

Relation between Fourier and Z Transforms

If the Z transform of a signal exists and if the ROC includes the unit circle, then the Fourier transform is equal to the Z transform evaluated on the unit circle.

Z transform:

$$X(z) = \sum_{n = -\infty}^{\infty} x[n] z^{-n}$$

DT Fourier transform:

$$X(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\Omega n} = H(z)\big|_{z=e^{j\Omega}}$$

Relation between Fourier and Z Transforms

Fourier transform "inherits" properties of Z transform.

Property	x[n]	X(z)	$X(e^{j\Omega})$
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(s) + bX_2(s)$	$aX_1(e^{j\Omega}) + bX_2(e^{j\Omega})$
Time shift	$x[n-n_0]$	$z^{-n_0}X(z)$	$e^{-j\Omega n_0}X(e^{j\Omega})$
Multiply by n	nx[n]	$-z\frac{d}{dz}X(z)$	$j \frac{d}{d\Omega} X(e^{j\Omega})$
Convolution	$(x_1 \ast x_2)[n]$	$X_1(z) \times X_2(z)$	$X_1(e^{j\Omega}) \times X_2(e^{j\Omega})$

Fourier Representations: Summary

Thinking about signals by their frequency content and systems as filters has a large number of practical applications.

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.