
Chapter 3

Nonlinear Pulse Propagation

There are many nonlinear pulse propagation problems worthwhile of being
considered in detail, such as pulse propagation through a two-level medium
in the coherent regime, which leads to self-induced transparency and solitons
governed by the Sinus-Gordon-Equation. The basic model for the medium is
the two-level atom discussed before with infinitely long relaxation times T1,2,
i.e. assuming that the pulses are much shorter than the dephasing time in the
medium. In such a medium pulses exist, where the first half of the pulse fully
inverts the medium and the second half of the pulse extracts the energy from
the medium. The integral over the Rabi-frequency as defined in Eq.(2.39) is
than a mutiple of 2π. The interested reader is refered to the book of Allen
and Eberly [1]. Here, we are interested in the nonlinear dynamics due to
the Kerr-effect which is most important for understanding pulse propagation
problems in optical communications and short pulse generation.

3.1 The Optical Kerr-effect

In an isotropic and homogeneous medium, the refractive index can not de-
pend on the direction of the electric field. Therefore, to lowest order, the
refractive index of such a medium can only depend quadratically on the
field, i.e. on the intensity [22]

n = n(ω, |A|2) ≈ n0(ω) + n2,L|A|2. (3.1)

Here, we assume, that the pulse envelope A is normalized such that |A|2 is
the intensity of the pulse. This is the optical Kerr effect and n2,L is called
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Material Refractive index n n2,L[cm
2/W ]

Sapphire (Al2O3) 1.76 @ 850 nm 3·10−16
Fused Quarz 1.45 @ 1064 nm 2.46·10−16
Glass (LG-760) 1.5 @ 1064 nm 2.9·10−16
YAG (Y3Al5O12) 1.82 @ 1064 nm 6.2·10−16
YLF (LiYF4), ne 1.47 @ 1047 nm 1.72·10−16
Si 3.3 @ 1550 nm 4·10−14

Table 3.1: Nonlinear refractive index coefficients for different materials. In
the literature most often the electro-statitic unit system is in use. The con-
version is n2,L[cm2/W ] = 4.19 · 10−3n2,L[esu]/n0

the intensity dependent refractive index coefficient. Note, the nonlinear in-
dex depends on the polarization of the field and without going further into
details, we assume that we treat a linearily polarized electric field. For most
transparent materials the intensity dependent refractive index is positive.

3.2 Self-Phase Modulation (SPM)

In a purely one dimensional propagation problem, the intensity dependent
refractive index imposes an additional self-phase shift on the pulse envelope
during propagation, which is proportional to the instantaneous intensity of
the pulse

∂A(z, t)

∂z
= −jk0n2,L|A(z, t)|2A(z, t) = −jδ|A(z, t)|2A(z, t). (3.2)

where δ = k0n2,L is the self-phase modulation coefficient. Self-phase modu-
lation (SPM) leads only to a phase shift in the time domain. Therefore, the
intensity profile of the pulse does not change only the spectrum of the pulse
changes, as discussed in the class on nonlinear optics. Figure (3.1) shows
the spectrum of a Gaussian pulse subject to SPM during propagation (for
δ = 2 and normalized units). New frequency components are generated by
the nonlinear process via four wave mixing (FWM). If we look at the phase of
the pulse during propagation due to self-phase modulation, see Fig. 3.2 (a),
we find, that the pulse redistributes its energy, such that the low frequency
contributions are in the front of the pulse and the high frequencies in the
back of the pulse, similar to the case of positive dispersion.
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Figure 3.1: Spectrum |Â(z, ω = 2πf)|2 of a Gaussian pulse subject to self-
phase modulation.
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Figure 3.2: (a) Intensity, (b) phase and (c) instantaneous frequency of a
Gaussian pulse during propagation through a medium with positive self-
phase modulation.
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3.3 The Nonlinear Schrödinger Equation

If both effects, dispersion and self-phase modulation, act simultaneously on
the pulse, the field envelope obeys the equation

j
∂A(z, t)

∂z
= −D2

∂2A

∂t2
+ δ|A|2A, (3.3)

This equation is called the Nonlinear Schrödinger Equation (NSE) - if we
put the imaginary unit on the left hand side -, since it has the form of a
Schrödinger Equation. Its called nonlinear, because the potential energy
is derived from the square of the wave function itself. As we have seen
from the discussion in the last sections, positive dispersion and positive self-
phase modulation lead to a similar redistribution of the spectral components.
This enhances the pulse spreading in time. However, if we have negative
dispersion, i.e. a wave packet with high carrier frequency travels faster than
a wave packet with a low carrier frequency, then, the high frequency wave
packets generated by self-phase modulation in the front of the pulse have
a chance to catch up with the pulse itself due to the negative dispersion.
The opposite is the case for the low frequencies. This arrangement results
in pulses that do not disperse any more, i.e. solitary waves. That negative
dispersion is necessary to compensate the positive Kerr effect is also obvious
from the NSE (3.3). Because, for a positive Kerr effect, the potential energy
in the NSE is always negative. There are only bound solutions, i.e. bright
solitary waves, if the kinetic energy term, i.e. the dispersion, has a negative
sign, D2 < 0.

3.3.1 The Solitons of the NSE

In the following, we study different solutions of the NSE for the case of
negative dispersion and positive self-phase modulation. We do not intend
to give a full overview over the solution manyfold of the NSE in its full
mathematical depth here, because it is not necessary for the following. This
can be found in detail elsewhere [4, 5, 6, 7].
Without loss of generality, by normalization of the field amplitude A =

Á
τ

q
2D2

δ
, the propagation distance z = ź · τ 2/D2, and the time t = t́ · τ ,

the NSE (3.3) with negative dispersion can always be transformed into the
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normalized form

j
∂Á(ź, t)

∂ź
=

∂2Á

∂t́2
+ 2|Á|2Á (3.4)

This is equivalent to set D2 = −1 and δ = 2. For the numerical simulations,
which are shown in the next chapters, we simulate the normalized eq.(3.4)
and the axes are in normalized units of position and time.

3.3.2 The Fundamental Soliton

We look for a stationary wave function of the NSE (3.3), such that its absolute
square is a self-consistent potential. A potential of that kind is well known
from Quantum Mechanics, the sech2-Potential [8], and therefore the shape of
the solitary pulse is a sech

As(z, t) = A0sech
µ
t

τ

¶
e−jθ, (3.5)

where θ is the nonlinear phase shift of the soliton

θ =
1

2
δA20z (3.6)

The soltion phase shift is constant over the pulse with respect to time in
contrast to the case of self-phase modulation only, where the phase shift is
proportional to the instantaneous power. The balance between the nonlinear
effects and the linear effects requires that the nonlinear phase shift is equal
to the dispersive spreading of the pulse

θ =
|D2|
τ 2

z. (3.7)

Since the field amplitude A(z, t) is normalized, such that the absolute square
is the intensity, the soliton energy fluence is given by

w =

Z ∞

−∞
|As(z, t)|2dt = 2A20τ . (3.8)

From eqs.(3.6) to (3.8), we obtain for constant pulse energy fluence, that the
width of the soliton is proportional to the amount of negative dispersion

τ =
4|D2|
δw

. (3.9)
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Note, the pulse area for a fundamental soliton is only determined by the
dispersion and the self-phase modulation coefficient

Pulse Area =
Z ∞

−∞
|As(z, t)|dt = πA0τ = π

r
|D2|
2δ

. (3.10)

Thus, an initial pulse with a different area can not just develope into a pure
soliton.
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Figure 3.3: Propagation of a fundamental soliton.

Fig. 3.3 shows the numerical solution of the NSE for the fundamental
soliton pulse. The distance, after which the soliton aquires a phase shift of
π/4, is called the soliton period, for reasons, which will become clear in the
next section.
Since the dispersion is constant over the frequency, i.e. the NSE has

no higher order dispersion, the center frequency of the soliton can be chosen
arbitrarily. However, due to the dispersion, the group velocities of the solitons
with different carrier frequencies will be different. One easily finds by a
Gallilei tranformation to a moving frame, that the NSE posseses the following
general fundamental soliton solution

As(z, t) = A0sech(x(z, t))e−jθ(z,t), (3.11)
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with

x =
1

τ
(t− 2|D2|p0z − t0), (3.12)

and a nonlinear phase shift

θ = p0(t− t0) + |D2|
µ
1

τ 2
− p20

¶
z + θ0. (3.13)

Thus, the energy fluence w or amplitude A0, the carrier frequency p0, the
phase θ0 and the origin t0, i.e. the timing of the fundamental soliton are
not yet determined. Only the soliton area is fixed. The energy fluence and
width are determined if one of them is specified, given a certain dispersion
and SPM-coefficient.

3.3.3 Higher Order Solitons

The NSE has constant dispersion, in our case negative dispersion. That
means the group velocity depends linearly on frequency. We assume, that
two fundamental soltions are far apart from each other, so that they do not
interact. Then this linear superpositon is for all practical purposes another
solution of the NSE. If we choose the carrier frequency of the soliton, starting
at a later time, higher than the one of the soliton in front, the later soliton
will catch up with the leading soliton due to the negative dispersion and the
pulses will collide.
Figure 3.4 shows this situation. Obviously, the two pulses recover com-

pletely from the collision, i.e. the NSE has true soliton solutions. The solitons
have particle like properties. A solution, composed of several fundamental
solitons, is called a higher order soliton. If we look closer to figure 3.4, we
recognize, that the soliton at rest in the local time frame, and which follows
the t = 0 line without the collision, is somewhat pushed forward due to the
collision. A detailed analysis of the collision would also show, that the phases
of the solitons have changed [4]. The phase changes due to soliton collisions
are used to built all optical switches [10], using backfolded Mach-Zehnder in-
terferometers, which can be realized in a self-stabilized way by Sagnac fiber
loops.



3.3. THE NONLINEAR SCHRÖDINGER EQUATION 71

0

1

2

3

4

5 -10
-5

0
5

10

0.5

1

1.5

2
A

m
pl

itu
de

Distance z

Time

Figure 3.4: A soliton with high carrier frequency collides with a soliton of
lower carrier frequency. After the collison both pulses recover completely.
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Figure 3.5: (a) Amplitude and, (b) Spectrum of a higher order soliton com-
posed of two fundamental solitons with the same carrier frequency
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The NSE also shows higher order soliton solutions, that travel at the same
speed, i.e. they posses the same carrier frequency, the so called breather
solutions. Figures 3.5(a) and (b) show the amplitude and spectrum of such
a higher order soliton solution, which has twice the area of the fundamental
soliton. The simulation starts with a sech-pulse, that has twice the area of
the fundamental soliton, shown in figure 3.3. Due to the interaction of the
two solitons, the temporal shape and the spectrum exhibits a complicated but
periodic behaviour. This period is the soliton period z = π/4, as mentioned
above. As can be seen from Figures 3.5(a) and 3.5(b), the higher order
soliton dynamics leads to an enormous pulse shortening after half of the
soliton period. This process has been used by Mollenauer, to build his soliton
laser [11]. In the soliton laser, the pulse compression, that occures for a
higher order soliton as shown in Fig. 3.5(a), is exploited for modelocking.
Mollenauer pioneered soliton propagation in optical fibers, as proposed by
Hasegawa and Tappert [3], with the soliton laser, which produced the first
picosecond pulses at 1.55 µm. A detailed account on the soliton laser is given
by Haus [12].

So far, we have discussed the pure soliton solutions of the NSE. But,
what happens if one starts propagation with an input pulse that does not
correspond to a fundamental or higher order soliton?

3.3.4 Inverse Scattering Theory

Obviously, the NSE has solutions, which are composed of fundamental soli-
tons. Thus, the solutions obey a certain superposition principle which is
absolutely surprising for a nonlinear system. Of course, not arbitrary super-
positions are possible as in a linear system. The deeper reason for the solution
manyfold of the NSE can be found by studying its physical and mathemat-
ical properties. The mathematical basis for an analytic formulation of the
solutions to the NSE is the inverse scattering theory [13, 14, 4, 15]. It is a
spectral tranform method for solving integrable, nonlinear wave equations,
similar to the Fourier transform for the solution of linear wave equations [16].
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Figure 3.6: Fourier transformmethod for the solution of linear, time invariant
partial differential equations.

Figure 3.7: Schematic representation of the inverse scattering theory for the
solution of integrable nonlinear partial differential equations.

Let’s remember briefly, how to solve an initial value problem for a linear
partial differential equation (p.d.e.), like eq.(2.184), that treats the case of
a purely dispersive pulse propagation. The method is sketched in Fig. 3.6.
We Fourier tranform the initial pulse into the spectral domain, because, the
exponential functions are eigensolutions of the differential operators with
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constant coefficients. The right side of (2.184) is only composed of powers of
the differntial operator, therefore the exponentials are eigenfunctions of the
complete right side. Thus, after Fourier transformation, the p.d.e. becomes
a set of ordinary differential equations (o.d.e.), one for each partial wave.
The excitation of each wave is given by the spectrum of the initial wave.
The eigenvalues of the differential operator, that constitutes the right side
of (2.184), is given by the dispersion relation, k(ω), up to the imaginary
unit. The solution of the remaining o.d.e is then a simple exponential of the
dispersion relation. Now, we have the spectrum of the propagated wave and
by inverse Fourier transformation, i.e. we sum over all partial waves, we find
the new temporal shape of the propagated pulse.
As in the case of the Fourier transform method for the solution of linear

wave equations, the inverse scattering theory is again based on a spectral
transform, (Fig.3.7). However, this transform depends now on the details
of the wave equation and the initial conditions. This dependence leads to
a modified superposition principle. As is shown in [7], one can formulate
for many integrable nonlinear wave equations a related scattering problem
like one does in Quantum Theory for the scattering of a particle at a poten-
tial well. However, the potential well is now determined by the solution of
the wave equation. Thus, the initial potential is already given by the ini-
tial conditions. The stationary states of the scattering problem, which are
the eigensolutions of the corresponding Hamiltonian, are the analog to the
monochromatic complex oscillations, which are the eigenfunctions of the dif-
ferential operator. The eigenvalues are the analog to the dispersion relation,
and as in the case of the linear p.d.e’s, the eigensolutions obey simple linear
o.d.e’s.
A given potential will have a certain number of bound states, that cor-

respond to the discrete spectrum and a continuum of scattering states. The
characteristic of the continuous eigenvalue spectrum is the reflection coef-
ficient for waves scatterd upon reflection at the potential. Thus, a certain
potential, i.e. a certain initial condition, has a certain discrete spectrum and
continuum with a corresponding reflection coefficient. From inverse scatter-
ing theory for quantum mechanical and electromagnetic scattering problems,
we know, that the potenial can be reconstructed from the scattering data,
i.e. the reflection coefficient and the data for the discrete spectrum [?]. This
is true for a very general class of scattering potentials. As one can almost
guess now, the discrete eigenstates of the initial conditions will lead to soliton
solutions. We have already studied the dynamics of some of these soliton so-
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lutions above. The continuous spectrum will lead to a dispersive wave which
is called the continuum. Thus, the most general solution of the NSE, for
given arbitrary initial conditions, is a superposition of a soliton, maybe a
higher order soliton, and a continuum contribution.
The continuum will disperse during propagation, so that only the soliton

is recognized after a while. Thus, the continuum becomes an asympthotically
small contribution to the solution of the NSE. Therefore, the dynamics of
the continuum is completely discribed by the linear dispersion relation of the
wave equation.
The back transformation from the spectral to the time domain is not as

simple as in the case of the Fourier transform for linear p.d.e’s. One has to
solve a linear integral equation, the Marchenko equation [17]. Nevertheless,
the solution of a nonlinear equation has been reduced to the solution of two
linear problems, which is a tremendous success.
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Figure 3.8: Solution of the NSE for an unchirped and rectangular shaped
initial pulse.
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To appreciate these properties of the solutions of the NSE, we solve the
NSE for a rectangular shaped initial pulse. The result is shown in Fig. 3.8.
The scattering problem, that has to be solved for this initial condition,

is the same as for a nonrelativistic particle in a rectangular potential box
[32]. The depth of the potential is chosen small enough, so that it has only
one bound state. Thus, we start with a wave composed of a fundamental
soliton and continuum. It is easy to recognize the continuum contribution,
i.e. the dispersive wave, that separates from the soliton during propagation.
This solution illustrates, that soliton pulse shaping due to the presence of
dispersion and self-phase modulation may have a strong impact on pulse
generation [18]. When the dispersion and self-phase modulation are properly
adjusted, soliton formation can lead to very clean, stable, and extremly short
pulses in a modelocked laser.

3.4 Universality of the NSE

Above, we derived the NSE in detail for the case of disperison and self-phase
modulation. The input for the NSE is surprisingly low, we only have to
admitt the first nontrivial dispersive effect and the lowest order nonlinear
effect that is possible in an isotropic and homogeneous medium like glass,
gas or plasmas. Therefore, the NSE and its properties are important for
many other effects like self-focusing [19], Langmuir waves in plasma physics,
and waves in proteine molecules [20]. Self-focusing will be treated in more
detail later, because it is the basis for Kerr-Lens Mode Locking.

3.5 Soliton Perturbation Theory

From the previous discussion, we have full knowledge about the possible
solutions of the NSE that describes a special Hamiltonian system. However,
the NSE hardly describes a real physical system such as, for example, a real
optical fiber in all its aspects [21, 22]. Indeed the NSE itself, as we have
seen during the derivation in the previous sections, is only an approximation
to the complete wave equation. We approximated the dispersion relation
by a parabola at the assumed carrier frequency of the soliton. Also the
instantaneous Kerr effect described by an intensity dependent refractive index
is only an approximation to the real χ(3)-nonlinearity of a Kerr-medium [23,
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24]. Therefore, it is most important to study what happens to a soliton
solution of the NSE due to perturbing effects like higher order dispersion,
finite response times of the nonlinearites, gain and the finite gain bandwidth
of amplifiers, that compensate for the inevitable loss in a real system.
The investigation of solitons under perturbations is as old as the solitons

itself. Many authors treat the perturbing effects in the scattering domain
[25, 26]. Only recently, a perturbation theory on the basis of the linearized
NSE has been developed, which is much more illustrative then a formulation
in the scattering amplitudes. This was first used by Haus [27] and rigorously
formulated by Kaup [28]. In this section, we will present this approach as
far as it is indispensible for the following.
A system, where the most important physical processes are dispersion

and self-phase modulation, is described by the NSE complimented with some
perturbation term F

∂A(z, t)

∂z
= −j

∙
|D2|∂

2A

∂t2
+ δ|A|2A

¸
+ F (A,A∗, z). (3.14)

In the following, we are interested what happens to a solution of the full
equation (3.14) which is very close to a fundamental soliton, i.e.

A(z, t) =

∙
a(

t

τ
) +∆A(z, t)

¸
e−jksz. (3.15)

Here, a(x) is the fundamental soliton according to eq.(3.5)

a(
t

τ
) = A0 sech(

t

τ
), (3.16)

and
ks =

1

2
δA20 (3.17)

is the phase shift of the soliton per unit length, i.e. the soltion wave vector.
A deviation from the ideal soliton can arise either due to the additional

driving term F on the right side or due to a deviation already present in
the initial condition. We use the form (3.15) as an ansatz to solve the NSE
to first order in the perturbation ∆A, i.e. we linearize the NSE around the
fundamental soliton and obtain for the perturbation

∂∆A

∂z
= −jks

∙µ
∂2

∂x2
− 1
¶
∆A+ 2sech2(x) (2∆A+∆A∗)

¸
+F (A,A∗, z)ejksz, (3.18)
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where x = t/τ . Due to the nonlinearity, the field is coupled to its complex
conjugate. Thus, eq.(3.18) corresponds actually to two equations, one for the
amplitude and one for its complex conjugate. Therefore, we introduce the
vector notation

∆A =

µ
∆A
∆A∗

¶
. (3.19)

We further introduce the normalized propagation distance z0 = ksz and the
normalized time x = t/τ . The linearized perturbed NSE is then given by

∂

∂z0
∆A = L∆A+

1

ks
F(A,A∗, z)ejz

0
(3.20)

Here, L is the operator which arises from the linearization of the NSE

L = −jσ3
∙
(
∂2

∂x2
− 1) + 2 sech2(x)(2 + σ1)

¸
, (3.21)

where σi, i = 1, 2, 3 are the Pauli matrices. For a solution of the inhomoge-
neous equation (3.20), we need the eigenfunctions and the spectrum of the
differential operator L. We found in section 3.3.2, that the fundamental soli-
ton has four degrees of freedom, four free parameters. This gives already four
known eigensolutions and mainsolutions of the linearized NSE, respectively.
They are determined by the derivatives of the general fundamental soliton
solutions according to eqs.(3.11) to (3.13) with respect to free parameters.
These eigenfunctions are

fw(x) =
1

w
(1− x tanhx)a(x)

µ
1
1

¶
, (3.22)

fθ(x) = −ja(x)
µ

1
−1

¶
, (3.23)

fp(x) = −j xτa(x)
µ

1
−1

¶
, (3.24)

ft(x) =
1

τ
tanh(x) a(x)

µ
1
1

¶
, (3.25)

and they describe perturbations of the soliton energy, phase, carrier frequency
and timing. One component of each of these vector functions is shown in Fig.
3.9.
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Figure 3.9: Perturabations in soliton amplitude (a), phase (b), frequency (c),
and timing (d). 

The action of the evolution operator of the linearized NSE on these soliton
perturbations is

Lfw =
1

w
fθ, (3.26)

Lfθ = 0, (3.27)

Lfp = −2τ 2ft, (3.28)

Lft = 0. (3.29)
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Equations (3.26) and (3.28) indicate, that perturbations in energy and
carrier frequency are converted to additional phase and timing fluctuations
of the pulse due to SPM and GVD. This is the base for soliton squeezing in
optical fibers [27]. The timing and phase perturbations can increase without
bounds, because the system is autonomous, the origin for the Gordon-Haus
effect, [29] and there is no phase reference in the system. The full continuous
spectrum of the linearized NSE has been studied by Kaup [28] and is given
by

Lfk = λkfk, (3.30)

λk = j(k2 + 1), (3.31)

fk(x) = e−jkx
µ
(k − jtanhx)2

sech2x

¶
, (3.32)

and

Lf̄k = λ̄k f̄k, (3.33)

λ̄k = −j(k2 + 1), (3.34)

f̄k = σ1fk. (3.35)

Our definition of the eigenfunctions is slightly different from Kaup [28], be-
cause we also define the inner product in the complex space as

< u|v >=
1

2

Z +∞

−∞
u+(x)v(x)dx. (3.36)

Adopting this definition, the inner product of a vector with itself in the
subspace where the second component is the complex conjugate of the first
component is the energy of the signal, a physical quantity.
The operator L is not self-adjoint with respect to this inner product. The

physical origin for this mathematical property is, that the linearized system
does not conserve energy due to the parametric pumping by the soliton.
However, from (3.21) and (3.36), we can easily see that the adjoint operator
is given by

L+ = −σ3Lσ3, (3.37)

and therefore, we obtain for the spectrum of the adjoint operator

L+f
(+)
k = λ

(+)
k f

(+)
k , (3.38)

λ
(+)
k = −j (k2 + 1), (3.39)

f
(+)
k =

1

π(k2 + 1)2
σ3fk, (3.40)
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and

L+f̄
(+)
k = λ̄

(+)
k f̄

(+)
k , (3.41)

λ̄
(+)
k = j(k2 + 1), (3.42)

f̄
(+)
k =

1

π(k2 + 1)2
σ3f̄k. (3.43)

The eigenfunctions to L and its adjoint are mutually orthogonal to each
other, and they are already properly normalized

< f
(+)
k |fk0 > = δ(k − k0), < f̄

(+)
k |̄fk0 >= δ(k − k0)

< f̄
(+)
k |fk0 > = < f

(+)
k |̄fk0 >= 0.

This system, which describes the continuum excitations, is made complete
by taking also into account the perturbations of the four degrees of freedom
of the soliton (3.22) - (3.25) and their adjoints

f (+)w (x) = j2τσ3fθ(x) = 2τa(x)

µ
1
1

¶
, (3.44)

f
(+)
θ (x) = −2jτσ3fw(x)

=
−2jτ
w

(1− x tanhx)a(x)

µ
1
−1

¶
, (3.45)

f (+)p (x) = −2jτ
w

σ3ft(x) =
2i

w
tanhxa(x)

µ
1
−1

¶
, (3.46)

f
(+)
t (x) =

2jτ

w
σ3fp(x) =

2τ 2

w
xa(x)

µ
1
1

¶
.. (3.47)

Now, the unity can be decomposed into two projections, one onto the con-
tinuum and one onto the perturbation of the soliton variables [28]

δ(x− x0) =

Z ∞

−∞
dk
h
|fk >< f (+)k |+ |f̄k >< f̄ (+)k |

i
+ |fw >< f (+)w |+ |fθ >< f (+)θ | (3.48)

+ |fp >< f (+)p |+ |ft >< f (+)t |.
Any deviation∆A can be decomposed into a contribution that leads to a soli-
ton with a shift in the four soliton paramters and a continuum contribution
ac

∆A(z0) = ∆w(z0)fw +∆θ(z0)fθ +∆p(z0)fp +∆t(z0)ft + ac(z
0). (3.49)
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Further, the continuum can be written as

ac =

Z ∞

−∞
dk
£
g(k)fk(x) + ḡ(k)f̄k(x)

¤
. (3.50)

If we put the decomposition (3.49) into (3.20) we obtain

∂∆w

∂z0
fw +

∂∆θ

∂z0
fθ +

∂∆p

∂z0
fp +

∂∆t

∂z0
ft +

∂

∂z0
ac =

L (∆w(z0)fw +∆p(z0)fp + a(z
0)c) +

1

ks
F(A,A∗, z0)e−iz

0
. (3.51)

By building the scalar products (3.36) of this equation with the eigensolutions
of the adjoint evolution operator (3.38) to (3.43) and using the eigenvalues
(3.26) to (3.35), we find

∂

∂z0
∆w =

1

ks
< f (+)w |Fejz0 >, (3.52)

∂

∂z0
∆θ =

∆W

W
+
1

ks
f
(+)
θ |Fejz0 >, (3.53)

∂

∂z0
∆p =

1

ks
< f (+)p |Fejz0 >, (3.54)

∂

∂z0
∆t = 2τ∆p+

1

ks
< f

(+)
t |Fejz0 >, (3.55)

∂

∂z0
g(k) = j(1 + k2)g(k) +

1

ks
< f

(+)
k F(A,A∗, z0)ejz

0
> . (3.56)

Note, that the continuum ac has to be in the subspace defined by

σ1ac = a
∗
c . (3.57)

The spectra of the continuum g(k) and ḡ(k) are related by

ḡ(k) = g(−k)∗. (3.58)

Then, we can directly compute the continuum from its spectrum using (3.32),
(3.50) and (3.57)

ac = −∂
2G(x)

∂x2
+ 2 tanh(x)

∂G(x)

∂x
− tanh2(x)G(x) +G∗(x)sech2(x), (3.59)
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where G(x) is, up to the phase factor eiz
0
, Gordon’s associated function [33].

It is the inverse Fourier transform of the spectrum

G(x) =

Z ∞

−∞
g(k) eikxdk. (3.60)

Since g(k) obeys eq.(3.56), Gordon’s associated function obeys a pure dis-
persive equation in the absence of a driving term F

∂G(z0, x)

∂z0
= −j

µ
1 +

∂2

∂x2

¶
G(z0, x). (3.61)

It is instructive to look at the spectrum of the continuum when only one
continuum mode with normalized frequency k0 is present, i.e. g(k) = δ(k −
k0). Then according to eqs. (3.59) and (3.60) we have

ac,k(x) =
£
k20 − 2jk0 tanh(x)− 1

¤
e−jk0x + 2sech2(x) cos(x). (3.62)

The spectrum of this continuum contribution is

ãc,k(ω) = 2π(k20 − 1)δ(ω − k0) + 2k0 P.V.

Ã
2

ω − k0
+

π

sinh
¡
π
2
(ω − k0)

¢!
+ π

ω − k0

sinh
¡
π
2
(ω − k0)

¢ + π
ω + k0

sinh
¡
π
2
(ω + k0)

¢ . (3.63)

3.6 Soliton Instabilities by Periodic Pertur-
bations

Periodic perturbations of solitons are important for understanding ultrashort
pulse lasers as well as ong distance optical communication systems [30, 31].
Along a long distance transmission system, the pulses have to be periodi-
cally amplified. In a mode-locked laser system, most often the nonlinearity,
dispersion and gain occur in a lumped manner. The solitons propagating in
these systems are only average solitons, which propagate through discrete
components in a periodic fashion, as we will see later.
The effect of this periodic perturbations can be modelled by an additional

term F in the perturbed NSE according to Eq.(3.14)

F (A,A∗, z) = jξ
∞X

n=−∞
δ(z − nzA)A(z, t). (3.64)
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The periodic kicking of the soliton leads to shedding of energy into continuum
modes according to Eq.(3.56)

∂

∂z
g(k) = jks(1 + k2)g(k)+ < f

(+)
k F(A,A∗, z)ejksz > . (3.65)

< f
(+)
k F(A,A∗, z)ejksz >= jξ

∞X
n=−∞

δ(z − nzA)
1

2
· (3.66)Z +∞

−∞

1

π(k2 + 1)2
ejkx

µ
(k + jtanhx)2

−sech2x
¶
·
µ
1
1

¶
A0 sechx dx

= jξ
∞X

n=−∞
δ(z − nzA) · (3.67)Z +∞

−∞

A0
2π(k2 + 1)2

ejkx
¡
k2 + 2jk tanhx− 1¢ ·sechx dx

Note, d
dx
sechx = −sechx tanhx, and therefore

< f
(+)
k F(A,A∗, z)ejz >= −jξ

∞X
n=−∞

δ(z − nzA) ·Z +∞

−∞

A0
2π(k2 + 1)

ejkx·sechxdx

= −jξ
∞X

n=−∞
δ(z − nzA)

A0
4(k2 + 1)

sech
µ
πk

2

¶
. (3.68)

Using
P∞

n=−∞ δ(z − nzA) =
1
zA

P∞
m=−∞ e

jm 2π
zA

z we obtain

∂

∂z
g(k) = jks(1 + k2)g(k)− j

ξ

zA

∞X
m=−∞

e
jm 2π

zA
z A0
4(k2 + 1)

sech
µ
πk

2

¶
. (3.69)

Eq.(3.69) is a linear differential equation with constant coefficients for the
continuum amplitudes g(k), which can be solved by variation of constants
with the ansatz

g(k, z) = C(k, z)ejks(1+k
2)z, (3.70)
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and initial conditions C(z = 0) = 0, we obtain

∂

∂z
C(k, z) = −j ξ

zA

∞X
m=−∞

A0
4(k2 + 1)

sech
µ
πk

2

¶
e
−j
³
ks(1+k2)−m 2π

zA
z
´
, (3.71)

or

C(k, z) = −j ξ

zA

A0
4(k2 + 1)

sech
µ
πk

2

¶
·

∞X
m=−∞

Z z

0

e
j(−ks(1+k2)+m 2π

zA
)z
dz

= −j ξ

zA

A0
4(k2 + 1)

sech
µ
πk

2

¶
· (3.72)

∞X
m=−∞

e
j(−ks(1+k2)+m 2π

zA
)z − 1

m 2π
zA
− ks(1 + k2)

.

There is a resonant denominator, which blows up at certain normalized fre-
quencies km for z →∞ Those frequencies are given by

m
2π

zA
− ks(1 + k2m) = 0 (3.73)

or km = ±
s

m 2π
zA

ks
− 1. (3.74)

Removing the normalization by setting k = ωτ, ks = |D2| /τ 2 and introducing
the nonlinear phase shift of the soliton acquired over one periode of the
perturbation φ0 = kszA, we obtain a handy formula for the location of the
resonant sidebands

ωm = ±1
τ

s
2mπ

φ0
− 1, (3.75)

and the coefficients

C(ω, z) = −j ξ

zA

A0

4((ωτ)2 + 1)
sech

³πωτ
2

´
(3.76)

·
∞X

m=−∞
zA

e
j(−ks(1+(ωτ)2)+m 2π

zA
)z − 1

2πm− φ0(1 + (ωτ)
2)

.

The coefficients stay bounded for frequencies not equal to the resonant condi-
tion and they grow linearly with zA, at resonance, which leads to a destruc-
tion of the pulse. To stabilize the soliton against this growth of resonant
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Figure 3.10: Phasematching between soliton and continuum due to periodic
perturbations leads to resonant sideband generation. The case shown is for
φ0 = π/2.

sidebands, the resonant frequencies have to stay outside the spectrum of the
soliton, see Fig. 3.10, which feeds the continuum, i.e. ωm À 1

τ
. This con-

dition is only fulfilled if φ0 ¿ π/4. This condition requires that the soliton
period is much longer than the periode of the perturbation. As an example
Fig. 3.10 shows the resonant sidebands observed in a fiber laser. For optical
communication systems this condition requires that the soliton energy has
to be kept small enough, so that the soliton periode is much longer than the
distance between amplifiers, which constitute periodic perturbations to the
soliton.These sidebands are often called Kelly-Sidebands, according to the
person who first described its origin properly [30].
To illustrate its importance we discuss the spectrum observed from the

longcavity Ti:sapphire laser system illustrated in Figure 3.11 and described
in full detail in [37]. Due to the low repetitionrate, a rather large pulse
energy builts up in the cavity, which leads to a large nonlinear phase shift
per roundtrip.Figure 3.12 shows the spectrum of the output from the laser.
The Kelly sidebands are clearly visible. It is this kind of instability, which
limits further increase in pulse energy from these systems operating in the
soliton pulse shaping regime. Energy is drained from the main pulse into
the sidebands, which grow at the expense of the pulse. At some point the
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Figure 3.11: Schematic layout of a high pulse energy laser cavity. All shaded
mirrors are (Double-chirped mirrors) DCMs. The standard 100 MHz cavity
with arms of 45 cm and 95 cm extends from the OC to M6 for the short
and long arms respectively. The multiple pass cavity (MPC) is enclosed in
the dotted box. The pump source is a frequency doubled Nd:Vanadate that
produces up to 10W at 532 nm [37].

pulse shaping becomes unstable because of conditions to be discussed in later
chapters.

Figure 3.12: Measured modelocked spectrumwith a 16.5 nmFWHMcentered
at 788 nm

Kowalewicz, A. M., et al. "Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens modelocked
Ti:Al2O3 oscillator." Optics Letters 28 (2003): 1507-09. 

Kowalewicz, A. M., et al. "Generation of 150-nJ pulses from a multiple-pass cavity Kerr-lens modelocked
Ti:Al2O3 oscillator." Optics Letters 28 (2003): 1507-09. 
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3.7 Pulse Compression

So far we have discussed propagation of a pulse in negative dispersive media
and positive self-phase modulation. Then at large enough pulse energy a
soliton can form, because the low and high frequency components generated
by SPM in the front and the back of the pulse are slow and fast and therefore
catch up with the pulse and stay together. What happens if the dispersion
is positive? Clearly, the low and high frequency components generated by
SPM in the front and back of the pulse are fast and slow and move away from
the pulse in a continuous fashion. This leads to highly but linearly chirped
pulse, which can be compressed after the nonlinear propagation by sending
it through a linear negative dispersive medium or prism pair or grating pair.
In that way, pulses can be compressed by large factors of 3 to 20. This pulse
compression process can be formulated in a more general way.

3.7.1 General Pulse Compression Scheme

The general scheme for pulse compression of optical pulses was independently
proposed by Gires and Tournois in 1964 [38] and Giordmaine et al. in 1968
[39]. The input pulse is first spectrally broadened by a phase modulator. The
phase over the generated spectrum is hopefully in a form that can be con-
veniently removed afterwards, i.e. all spectral components can be rephased
to generate a short as possible pulse in the time domain. To compress fem-
tosecond pulses an ultrafast phase modulator has to be used, that is the pulse
has to modulate its phase itself by self-phase modulation. In 1969 Fisher et
al. [40] proposed that picosecond pulses can be compressed to femtosecond
duration using the large positive chirp produced around the peak of a short
pulse by SPM in an optical Kerr liquid. In the same year Laubereau [41] used
several cells containing CS2 and a pair of diffraction gratings to compress, by
approximately ten times, 20-ps pulses generated by a mode-locked Nd:glass
laser.
As discussed in section 3.2, the optical Kerr effect in a medium gives

rise to an intensity dependent change of the refractive index ∆n = n2,LI(t),
where n2,L is the nonlinear-index coefficient and I(t) is the optical inten-
sity. The self-induced intensity-dependent nonlinear phase shift experienced
by an optical field during its propagation in a Kerr medium of length c is
given by ∆φ(t) = −(ω0/c)n2I(t)c where ω0 is the carrier frequency of the
pulse. The induced frequency sweep over the pulse can be calculated from
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Figure 3.13: Intensity profile, spectrum, instantaneous frequency, optimum
quadratic compression and ideal compression for two cases: top row for a
short fiber, i.e. high nonlinearity and low dispersion; bottom row optimum
nonlinearity and dispersion.[42]

∆ω = d∆φ/dt, see Figure 3.13. Around the central part of the pulse, where
most of the energy is concentrated, the phase is parabolic, leading to an
approximately linear chirp in frequency. The region with linear chirp can
be enlarged in the presence of positive dispersion in a Kerr medium of the
same sign [42]. To compress the spectrally broadened and chirped pulse,
a dispersive delay line can be used, characterized by a nearly linear group
delay Tg(ω). Or if the chirp generated over the newly generated spectrum
is nonlinear this chirp needs to be removed by a correspondingly nonlinear
group delay Tg(ω). Figure 3.13 shows that in the case SPM and positive
GDD a smoother spectrum with more linear chirp is created and therefore
the final compressed pulse is of higher quality, i.e. a higher percentage of the
total pulse energy is really concentrated in the short pulse and not in a large
uncompressed pulse pedestal.

For a beam propagating in a homogenous medium,unfortunately the non-
linear refractive index does not only lead to a temporal phase modulation but
also to a spatial phase modulation, which leads to self-focusing or defocus-
ing and small-scale instabilities [43]. Therefore, a fundamental requirement

Nakatsuka, H., D. Grischkowsky, and A. C. Balant. "Nonlinear picosecond-pulse propagation through 
optical fibers with positive group velocity dispersion." Physics Review Letters 47 (1981): 910-913. 

Image removed due to copyright restrictions.
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for pulse compression is that the Kerr effect is provided by a guiding non-
linear medium so that a spatially uniform spectral broadening is obtained.
In 1974 Ippen et al. reported the first measurement of SPM in the absence
of self-trapping and self-focusing by using a guiding multimode optical fiber
filled with liquid CS2 [44]. In 1978 Stolen and Lin reported measurements of
SPM in single-mode silica core fibers [45]. The important advantage of the
single-mode fiber is that the phase modulation can be imposed over the entire
transverse profile of the beam, thus removing the problem of unmodulated
light in the wings of the beam [44]. In 1981 Nakatsuka et al. [42] performed
the first pulse compression experiment using fibers as a Kerr medium in the
positive dispersion region.

3.7.2 Spectral Broadening with Guided Modes

The electric field of a guided mode can be written as [52]:

E(r, ω) = A(z, ω)F (x, y) exp[iβ(ω)z] (3.77)

whereA(z, ω) is the mode-amplitude for a given frequency component, F (x, y)
is the mode-transverse field distribution and β(ω) is the mode-propagation
constant. The propagation equation for the guided field splits into two equa-
tions for amplitude A(z, ω) and field pattern F (x, y). In first order pertur-
bation theory a perturbation ∆n = n̄2|E|2 of the refractive index, which is
much smaller than the index step that defines the mode, does not change the
modal distribution F (x, y), while the mode propagation constant β̄(ω) can
be written as β̄(ω) = β(ω) +∆β , where the perturbation ∆β is given by

∆β =
(ω0/c)

R R
∆n|F (x, y)|2dxdyR R |F (x, y)|2dxdy . (3.78)

As shown by Eq.(3.78), the perturbation ∆β, which includes the effect due
to the fiber nonlinearity, is related to a spatial average on the fiber trans-
verse section of the perturbation ∆n. In this way, spatially uniform SPM is
realized.
Using regular single mode fibers and prism-grating compressors, pulses as

short as 6 fs at 620 nm were obtained in 1987 from 50-fs pulses generated by
a colliding-pulse mode-locking dye laser [46] see Figure 3.14. More recently,
13-fs pulses from a cavity-dumped Ti:sapphire laser were compressed to 4.5
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Figure 3.14: Fiber-grating pulse compressor to generate femtosecond pulses
[53]

fs with the same technique using a compressor consisting of a quartz 45◦-
prism pair, broadband chirped mirrors and thin-film Gires-Tournois dielectric
interferometers [47, 54]. The use of a single-mode optical fiber limits the pulse
energy to a few nanojoule.
In 1996, using a phase modulator consisting of a hollow fiber (leaky

waveguide) filled with noble gas, a powerful pulse compression technique
has been introduced, which handles high-energy pulses [48]. The implemen-
tation of the hollow-fiber compression technique using 20-fs seed pulses from
a Ti:sapphire system and chirped-mirrors that form a dispersive delay line
has led to the generation of pulses with duration down to 4.5 fs [49] and en-
ergy up to 0.55 mJ [50]. This technique presents the advantages of a guiding
element with a large-diameter mode and of a fast nonlinear medium with
high damage threshold.
The possibility to take advantage of the ultrabroadband spectrum which

can be generated by the phase modulation process, is strictly related to the
development of dispersive delay lines capable of controlling the frequency-
dependent group delay over such bandwidth.

3.7.3 Dispersion Compensation Techniques

The pulse frequency sweep (chirp) imposed by the phase modulation is ap-
proximately linear near the peak of the pulse, where most of the energy is
concentrated. In the presence of dispersion in the phase modulator the chirp
becomes linear over almost the whole pulse. Therefore, optimum temporal
compression requires a group delay, Tg,comp(ω) = ∂φ/∂ω, characterized by a

Figure by MIT OCW.
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nearly linear dependence on frequency in the dispersive delay line. Since in
the case of SPM the nonlinear index n2 is generally positive far from reso-
nance, a negative group delay dispersion (GDD = ∂Tg/∂ω) is required in
the compressor. In order to generate the shortest pulses, the pulse group de-
lay after the phase modulator and the compressor must be nearly frequency
independent. Tg(ω) can be expanded into a Taylor series around the central
frequency ω0:

Tg(ω) = φ0(ω0) + φ00(ω0)∆ω +
1

2
φ000(ω0)∆ω2 +

1

3!
φ0000(ω0)∆ω3 + · · · (3.79)

where ∆ω = ω − ω0, and φ00(ω0), φ
000(ω0), and φ0000(ω0) are the second-, the

third-, and the fourth-order-dispersion terms, respectively. Critical values of
these dispersion terms above which dispersion causes a significant change of
the pulse are given by a simple scaling expression: φ(n) = τnp , where φ

(n) is
the nth-order dispersion term and τ p is the pulse duration. For example,
a second order dispersion with φ00 = τ 2p results in a pulse broadening by
more than a factor of two. Therefore dispersion-induced pulse broadening
and distortion become increasingly important for decreasing pulse durations.
Equation (3.79) shows that to compress a pulse to near the transform limit
one should eliminate these high order dispersion terms. For instance, assum-
ing a transform-limited input pulse to the phase modulator, the condition
for third-order-dispersion-compensated compression is the following:

φ00(ω0) = φ00modulator + φ00compresssor = 0 (3.80)

φ000(ω0) = φ000modulator + φ000compresssor = 0 (3.81)

Several compressor schemes have been developed so far that included such
components as: diffraction gratings, Brewster-cut prism pairs, combination
of gratings and prisms, thin prisms and chirped mirrors, and chirped mirrors
only, etc. In the following we will briefly outline the main characteristics of
these compressor schemes.

Grating and Prism Pairs

In 1968 Treacy demonstrated for the first time the use of a pair of diffraction
gratings to achieve negative GDD [55]. In 1984 Fork et al. obtained negative
GDDwith pairs of Brewster-angled prisms [56]. Prism pairs have been widely
used for dispersion control inside laser oscillators since they can be very low
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Figure 3.15: Optical path difference in a two-element dispersive delay line
[107]

loss in contrast to grating pairs. In both optical systems the origin of the
adjustable dispersion is the angular dispersion that arises from diffraction
and refraction, respectively. The dispersion introduced by these systems can
be easily calculated, by calculating the phase accumulated between the input
and output reference planes [78]. To understand the main properties of these
systems, we will refer to Fig. 3.15. The first element scatters the input beam
with wave vector kin and input path vector l into the direction kout. The
beam passes between the first and the second element and is scattered back
into its original direction. The phase difference by the scattered beam and
the reference beam without the grating is: φ(ω) = kout(ω) · l. Considering
free-space propagation between the two elements, we have |kout| = ω/c, and
the accumulated phase can be written as

φ(ω) =
ω

c
|l| cos[γ − α(ω)] =

ω

c

D

cos(γ)
cos[γ − α(ω)] (3.82)

where: γ is the angle between the incident wave vector and the normal
to the first element; α is the angle of the outgoing wave vector, which is
a function of frequency; D is the spacing between the scattering elements
along a direction parallel to their normal. In the case of a grating pair the
frequency dependence of the diffraction angle α is governed by the grating

Figure by MIT OCW.
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law, that in the case of first-order diffraction is given by:

2πc

ω
= d[sinα(ω)− sin γ] (3.83)

where d is the groove spacing of the grating. Using Eq.(3.82) and Eq.(3.83),
it is possible to obtain analytic expressions for the GDD and the higher-order
dispersion terms (for single pass):

φ00(ω) = − 4π2cD

ω3d2 cos3 α(ω)
(3.84)

φ000(ω) =
12π2cD

ω4d2 cos3 α(ω)

µ
1 +

2πc sinα(ω)

ωd cos2 α(ω)

¶
(3.85)

It is evident from Eq.(3.84) that grating pairs give negative dispersion. D
is the distance between the gratings. A disadvantage of the grating pair is
the diffraction loss. For a double-pass configuration the loss is typically 75%.
Also the bandwidth for efficient diffraction is limited.
In the case of a Brewster-angled prism pair Eq.(3.82) reduces to the

following expression (for single pass) [56]:

φ(ω) =
ω

c
cp cosβ(ω) (3.86)

where cp is the distance between prism apices and β(ω) is the angle between
the refracted ray at frequency ω and the line joining the two apices. The
second and third order dispersion can be expressed in terms of the optical
path P (λ) = cp cosβ(λ):

φ00(ω) =
λ3

2πc2
d2P

dλ2
(3.87)

φ000(ω) = − λ4

4π2c3

µ
3
d2P

dλ2
+ λ

d3P

dλ3

¶
(3.88)

with the following derivatives of the optical path with respect to wavelength
evaluated at Brewster’s angle:

d2P

dλ2
= 2[n00 + (2n− n−3)(n0)2]cp sinβ − 4(n0)2cp cosβ (3.89)

d3P

dλ3
= [6(n0)3(n−6 + n−4 − 2n−2 + 4n2) + 12n0n00(2n− n−3)+(3.90)

+2n000]cp sinβ + 12[(n
−3 − 2n)(n0)3 − n0n00]cp cos β (3.91)
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Figure 3.16: Prism pair for dispersion compensation. The blue wavelengths
have less material in the light path then the red wavelengths. Therefore, blue
wavelengths are less delayed than red wavelength

where n is the refractive index of the prism material; n0, n00 and n000 are
respectively, the first-, second- and third-order derivatives of n, with respect
to wavelength. The prism-compressor has the advantage of reduced losses.
Using only fused silica prisms for dispersion compensation, sub-10-fs light
pulses have been generated directly from an oscillator in 1994 [79]. In 1996,
pulses with tens of microjoules energy, spectrally broadened in a gas-filled
hollow fiber were compressed down to 10 fs using a prism compressor [48].
Both in the case of grating and prism pairs, negative GDD is associated with
a significant amount of higher-order dispersion, which cannot be lowered or
adjusted independently of the desired GDD, thus limiting the bandwidth
over which correct dispersion control can be obtained. This drawback has
been only partially overcome by combining prism and grating pairs with
third-order dispersion of opposite sign. In this way pulses as short as 6 fs
have been generated in 1987 [46], and less than 5 fs in 1997 [47], by external
compression. This combination cannot be used for few-optical-cycle pulse
generation either in laser oscillators, due to the high diffraction losses of the
gratings, or in external compressors at high power level, due to the onset of

Figure by MIT OCW.
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unwanted nonlinearities in the prisms.

3.7.4 Dispersion Compensating Mirrors

Chirped mirrors are used for the compression of high energy pulses, because
they provide high dispersion with little material in the beam path, thus
avoiding nonlinear effects in the compressor.
Grating and prism compressors suffer from higher order dispersion. In

1993 Robert Szipoecs and Ferenc Krausz [80] came up with a new idea,
so called chirped mirrors. Laser mirrors are dielectric mirrors composed of
alternating high and low index quarter wavelenth thick layers resulting in
strong Bragg-reflection. In chirped mirrors the Bragg wavelength is chirped
so that different wavelength penetrate different depth into the mirror upon
reflection giving rise to a wavelength dependent group delay. It turns out
that the generation of few-cycle pulses via external compression [95] as well
as direct generation from Kerr lens mode-locked lasers [58] relies heavily on
the existence of chirped mirrors [57, 83, 59] for dispersion compensation.
There are two reasons to employ chirped mirrors . First the high-reflectivity
bandwidth, ∆f, of a standard dielectric Bragg-mirror is determined by the
Fresnel reflectivity rB of the high, nH , and low, nL, index materials used for
the dielectric mirror

rB =
∆f

fc
=

nH − nL
nH + nL

(3.92)

where fc is again the center frequency of the mirror. Metal mirrors are
in general too lossy, especially when used as intracavity laser mirrors. For
material systems typically used for broadband optical coatings such as Silicon
Dioxide and Titanium Dioxide with nSiO2 = 1.48 and nTiO2 = 2.4, (these
indexes might vary depending on the deposition technique used), a fractional
bandwidth ∆f/fc = 0.23 can be covered. This fractional bandwidth is only
about a third of an octave spanning mirror ∆f/fc = 2/3. Furthermore, the
variation in group delay of a Bragg-mirror impacts already pulses that fill
half the spectral range ∆f = 0.23fc. A way out of this dilemma was found
by introducing chirped mirrors [57], the equivalent of chirped fiber Bragg
gratings, which at that time were already well developed components in fiber
optics [60]. When the Bragg wavelength of the mirror stack is varied slowly
enough and no limitation on the number of layer pairs exists, an arbitrary
high reflectivity range of the mirror can be engineered. The second reason
for using chirped mirrors is based on their dispersive properties due to the
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wavelength dependent penetration depth of the light reflected from different
positions inside the chirped multilayer structure. Mirrors are filters, and in
the design of any filter, the control of group delay and group delay dispersion
is difficult. This problem is further increased when the design has to operate
over wavelength ranges up to an octave or more.

The matching problem Several designs for ultra broadband dispersion
compensating mirrors have been developed over the last years. For disper-
sion compensating mirrors which do not extend the high reflectivity range
far beyond what a Bragg-mirror employing the same materials can already
achieve, a multi-cavity filter design can be used to approximate the desired
phase and amplitude properties [61, 62]. For dispersion compensating mir-
rors covering a high reflectivity range of up to ∆f/fc = 0.4 the concept of
double-chirped mirrors (DCMs) has been developed [83][81]. It is based on
the following observations. A simple chirped mirror provides high-reflectivity
over an arbitrary wavelength range and, within certain limits, a custom des-
ignable average group delay via its wavelength dependent penetration depth
[73] (see Figure 3.17 (a) and (b) ). However, the group delay as a function
of frequency shows periodic variations due to the impedance mismatch be-
tween the ambient medium and the mirror stack, as well as within the stack
(see Figure 3.17 b and Figure 3.18). A structure that mitigates these mis-
matches and gives better control of the group delay dispersion (GDD) is the
double-chirped mirror (DCM) (Figure 3.17 c), in a way similar to that of an
apodized fiber Bragg grating [64].
Figure 3.18 shows the reflectivity and group delay of several Bragg and

chirped mirrors composed of 25 index steps, with nH = 2.5 and nL = 1.5,
similar to the refractive indices of TiO2 and SiO2, which result in a Fresnel
reflectivity of rB = 0.25. The Bragg-mirror can be decomposed in symmetric
index steps [83]. The Bragg wavenumber is defined as kB = π/(nLdL +
nHdH), where dL and dH are the thicknesses of the low and high index layer,
respectively. The Bragg wavenumber describes the center wavenumber of
a Bragg mirror composed of equal index steps. In the first case, (Figure
3.18, dash-dotted line) only the Bragg wave number is linearly chirped from
6.8µm−1 < kB < 11µm−1 over the first 20 index steps and held constant over
the last 5 index steps. The reflectivity of the structure is computed assuming
the structure imbedded in the low index medium. The large oscillations
in the group delay are caused by the different impedances of the chirped
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Figure 3.17: a) Standard Bragg mirror; (b) Simple chirped mirror, (c)
Double-chirped mirror with matching sections to avoid residual reflections
causing undesired oscillations in the GD and GDD of the mirror.

grating and the surrounding low index material causing a strong reflection at
the interface of the low index material and the grating stack. By adiabatic
matching of the grating impedance to the low index material this reflection
can be avoided. This is demonstrated in Fig. 3.18 by the dashed and solid
curves, corresponding to an additional chirping of the high index layer over
the first 12 steps according to the law dH = (m/12)αλB,12/(4nH) with α = 1,
and 2, for linear and quadratic adiabatic matching. The argument m denotes
the m-th index step and λB,12 = 0.740µm. The strong reduction of the
oscillations in the group delay by the double-chirp technique is clearly visible.
Quadratic tapering of the high index layer, and therefore, of the grating
already eliminates the oscillations in the group delay completely, which can
also be shown analytically by coupled mode analysis [81]. Because of the
double chirp a high transmission window at the short wavelength end of the
mirror opens up which is ideally suited for the pumping of Ti:sapphire lasers.
So far, the double-chirped mirror is only matched to the low index material
of the mirror. Ideally, the matching can be extended to any other ambient
medium by a properly designed AR-coating. However, this AR-coating has
to be of very high quality, i.e. very low residual reflectivity ideally a power
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Figure 3.18: Comparison of the reflectivity and group delay of chirpedmirrors
with 25 layer pairs and refractive indices nH = 2.5, and nL = 1.5.The upper
portion shows the enlarged top one percent of the reflectivity. The dotted
curves show the result for a simple chirped mirror. The dashed and solid
curves show the result for double-chirped mirrors where in addition to the
chirp in the Bragg wave number kB the thickness of the high-index layers is
also chirped over the first 12 layer pairs from zero to its maximum value for a
linear chirp, i.e. α = 1, (dashed curves) and for a quadratic chirp, i.e. α = 2
(solid curves). [83].

Kaertner, F. X., et al. "Design and fabrication of double-chirped mirrors." Optics Letters 15 (1990): 326-328.

Image removed due to copyright restrictions.
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Figure 3.19: Schematic structure of proposed broadband dispersion compen-
sating mirror system avoiding the matching to air: (a) tilted-front-interface
mirror; (b) back-side coated mirror and (c) Brewster-angle mirror.

reflectivity of 10−4, i.e. an amplitude reflectivity of r = 10−2 is required.
The quality of the AR-coating can be relaxed, if the residual reflection is
directed out of the beam path. This is achieved in so called tilted front-side
or back-side coated mirrors [65], [66], (Fig. 3.19 (a) and (b)). In the back-
side coated mirror the ideal DCM structure, which is matched to the low
index material of the mirror is deposited on the back of a substrate made
of the same or at least very similar low index material. The AR-coating is
deposited on the front of the slightly wedged substrate, so that the residual
reflection is directed out of the beam and does not affect the dispersion
properties. Thus the task of the AR-coating is only to reduce the Fresnel
losses of the mirror at the air-substrate interface, and therefore, it is good
enough for some applications, if the residual reflection at this interface is of
the order of 0.5%. However, the substrate has to be very thin in order to
keep the overall mirror dispersion negative, typically on the order of 200-500
µm. Laser grade quality optics are hard to make on such thin substrates
and the stress induced by the coating leads to undesired deformation of
the substrates. The front-side coated mirror overcomes this shortcoming

Figure by MIT OCW.
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by depositing the ideal DCM-structure matched to the index of the wedge
material on a regular laser grade substrate. A 100-200 µm thin wedge is
bonded on top of the mirror and the AR-coating is then deposited on this
wedge. This results in stable and octave spanning mirrors, which have been
successfully used in external compression experiments [69]. Both structures
come with limitations. First, they introduce a wedge into the beam, which
leads to an undesired angular dispersion of the beam. This can partially
be compensated by using these mirrors in pairs with oppositely oriented
wedges. The second drawback is that it seems to be impossible to make high
quality AR-coatings over one or more than one octave of bandwidth, which
have less than 0.5% residual reflectivity [68], i.e. on one reflection such a
mirror has at least 1% of loss, and, therefore, such mirrors cause high losses
inside a laser. For external compression these losses are acceptable. A third
possibility for overcoming the AR-coating problem is given by using the ideal
DCM under Brewster-angle incidence, (Figure 3.19) [67]. In that case, the
low index layer is automatically matched to the ambient air. However, under
p-polarized incidence the index contrast or Fresnel reflectivity of a layer pair
is reduced and more layer pairs are necessary to achieve high reflectivity.
Also the penetration depth into the mirror increased, so that scattering and
other losses in the layers become more pronounced. On the other hand, such a
mirror can generate more dispersion per bounce due to the higher penetration
depth. For external compression such mirrors might have advantages because
they can cover bandwidths much wider than one octave. This concept is
difficult to apply to the fabrication of curved mirrors. There is also a spatial
chirp of the reflected beam, which may become sizeable for large penetration
depth and has to be removed by back reflection or an additional bounce on
another Brewster-angle mirror, that recombines the beam. For intracavity
mirrors a way out of this dilemma is found by mirror pairs, which cancel the
spurious reflections due to an imperfect AR-coating and matching structure
in the chirped mirror [76]. Also this design has its drawbacks and limitations.
It requires a high precision in fabrication and depending on the bandwidth
of the mirrors it may be only possible to use them for a restricted range of
angles of incidence.

Double-chirped mirror pairs

There have been several proposals to increase the bandwidth of laser mirrors
by mutual compensation of GDD oscillations [70, 71, 72] using computer
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Figure 3.20: DCM-Pair M1 (a) and M2 (b). The DCM M1 can be decom-
posed in a double-chirped back-mirror MB matched to a medium with the
index of the top most layer. In M2 a layer with a quarter wave thickness
at the center frequency of the mirror and an index equivalent to the top
most layer of the back-mirror MB is inserted between the back-mirror and
the AR-coating. The new back-mirror comprising the quarter wave layer can
be reoptimized to achieve the same phase as MB with an additional π-phase
shift over the whole octave of bandwidth.

optimization. These early investigations resulted in a rather low reflectivity
of less than 95% over almost half of the bandwidth considered. The ideas
leading to the DCMs help us to show analytically that a design of DCM-
pairs covering one octave of bandwidth, i.e. 600 nm to 1200 nm, with high
reflectivity and improved dispersion characteristics is indeed possible [76].
Use of these mirror pairs in a Ti:sapphire laser system resulted in 5 fs pulses
with octave spanning spectra directly from the laser [58]. Yet, the potential
of these pairs is by no means fully exploited.

A DCM-Pair, see Fig. 3.20, consists of a mirror M1 and M2. Each is
composed of an AR-coating and a low-index matched double-chirped back-
mirror MB with given wavelength dependent penetration depth. The high
reflectivity range of the back-mirror can be easily extended to one octave by
simply chirping slowly enough and using a sufficient number of layer pairs.

Figure by MIT OCW.
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Figure 3.21: Decomposition of a DCM into a double-chirped backmirror MB
and an AR-coating.

However, the smoothness of the resulting GDD strongly depends on the qual-
ity of matching provided by the AR-coating and the double-chirped section.
Fig. 3.21 indicates the influence of the AR-coating on the GDD of the total
DCM-structure. The AR-coating is represented as a two - port with two in-
coming waves a1, b2 and two outgoing waves a2, b1. The connection between
the waves at the left port and the right port is described by the transfer
matrix µ

a1
b1

¶
= Tar

µ
a2
b2

¶
with Tar =

µ
1
t

r∗

t∗
r
t

1
t∗

¶
(3.93)

where we assumed that the multilayer AR-coating is lossless. Here, r and t
are the complex coefficients for reflection and transmission at port 1 assuming
reflection free termination of port 2. The back-mirror MB, is assumed to be
perfectly matched to the first layer in the AR-coating, has full reflection over
the total bandwidth under consideration. Thus its complex reflectivity in the
range of interest is given by

ρb = ejφb(ω) (3.94)

The phase φb(ω) is determined by the desired group delay dispersion

GDDb = −d2φb(ω)/dω2 (3.95)

up to an undetermined constant phase and group delay at the center fre-
quency of the mirror, ωc. All higher order derivatives of the phase are
determined by the desired dispersion of the mirror. Analytic formulas for
the design of DCMs, showing custom designed dispersion properties without
considering the matching problem to the ambient air, can be found in [73].

Figure by MIT OCW.
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The resulting total mirror reflectivity including the AR-coating follows from
(3.93)

ρtot =
t

t∗
ρb
1− r∗/ρb
1− rρb

(3.96)

For the special case of a perfectly reflecting back-mirror according to Eq.
(3.94) we obtain

ρtot =
t

t∗
ejφb(ω)

1− z∗

1− z
, with z = rejφb(ω) (3.97)

The new reflectivity is again unity but new contributions in the phase of the
resulting reflectivity appear due to the imperfect transmission properties of
the AR-coating. With the transmission coefficient of the AR-coating

t = |t|ejφt, (3.98)

The total phase of the reflection coefficient becomes

φtot = 2φt + φb(ω) + φGTI (3.99)

with

φGTI = 2arctan

∙
Im{z}

1 +Re{z}
¸

(3.100)

Here, φt is the phase of the transmission coefficient and φGTI is the phase due
to the Gire-Tournois interferometer created by the non-perfect AR-coating,
i.e. r 6= 0, and the back-mirror MB, (Figure 3.21). The phase φt of a
good AR-coating, i.e. |r| < 0.1, is linear and, therefore, does not introduce
undesired oscillations into the GD and GDD. However, the phase φGTI is
rapidly varying since φb(ω) varies over several 2π over the frequency range
of interest due to the monotonic group delay of the back-mirror. The size
of these oscillations scale with the quality of the AR-coating, i.e. with |r|.
Thus, the GDD oscillations are reduced with smaller residual reflectivity of
the AR-coating. Assuming, that the reflectivity r is real and smaller or equal
to 0.1, the oscillations in the group delay and group delay dispersion are easily
estimated by

Tg,GTI =
dφGTI
dω

≈ −rTgb(ω) cos[φb(ω)] (3.101)

with

Tgb(ω) = −dφb(ω)/dω,
GDDGTI = d2φGTI

dω2≈ r
¡
T 2gb(ω) sin[φb(ω)]−GDDb cos[φb(ω)]

¢ (3.102)
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The GTI-reflections add up coherently when multiple reflections on chirped
mirrors occur inside the laser over one round-trip, leading to pre- and post
pulses if the mode-locking mechanism is not strong enough to suppress them
sufficiently. Experimental results indicate that a residual reflection in the
AR-coating of r < 0.01 and smaller, depending on the number of reflections
per round-trip, is required so that the pre- and post pulses are sufficiently
suppressed. This corresponds to an AR-coating with less than 10−4 residual
power reflectivity, which can only be achieved over a very limited range, as
discussed above.
Over a limited wavelength range of 350 nm centered around 800 nm low

residual power reflectivities as small as 10−4 have been achieved effectively
after reoptimization of the AR-coating section and the double-chirped section
to form a combined matching section of higher matching quality. For even
larger bandwidth, approaching an octave, a residual power reflectivity of
10−4 is no longer possible [68]. A way out of this limitation is offered by the
observation, that a coherent subtraction of the pre- and post-pulses to first
order in r is possible by reflections on a mirror pair M1 and M2, see Figure
3.20 (a) and (b). A series of two reflections on a mirror with reflectivity
(3.97) and on a similar mirror with an additional phase shift of π between
the AR-coating and the back-mirror, having a reflectivity (3.97) where z is
replaced by −z, leads to a coherent subtraction of the first order GTI-effects.
The resulting total reflectivity of the two reflections is given by the product
of the individual complex reflectivities assuming the same AR-coating

ρtot,2 = −
µ
t

t∗

¶2
ei2φb(ω)

1− z∗2

1− z2
(3.103)

Now, the GTI-effects scale like the power reflectivity of the AR-coating r2

instead of the amplitude reflectivity r, which constitutes a tremendous im-
provement, since it is possible to design AR-coatings to the low index material
Si02 of the mirror with a residual power reflectivity between 0.001 and 0.01
while covering one octave of bandwidth [68]. However, there does not exist
a single physical layer which generates a phase shift of π/2 during one pas-
sage for all frequency components contained in an octave. Still, a layer with
a quarter wave thickness at the center frequency is a good starting design.
Then the back-mirror MB in the Mirror M2 can be reoptimized to take care
of the deviation from a quarter wave thickness further away from the center
frequency, because the back-mirror acts as a highly dispersive medium where
the phase or group delay can be designed at will.
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Figure 3.22: Reflectivity of the mirror with pumpwindow shown as thick solid
line with scale to the left. The group delay design goal for perfect dispersion
compensation of a prismless Ti:sapphire laser is shown as thick dash-dotted
line with scale to the right. The individual group delay of the designed
mirrors is shown as thin line and its average as a dashed line, which is almost
identical with the design goal over the wavelength range form 650-1200 nm.
The measured group delay, using white light interferometry, is shown as the
thick solid line from 600-1100 nm. Beyond 1100nm the sensitivity of Si-
detector used prevented further measurements.
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Figure 3.23 shows in the top graph the designed reflectivity of both mir-
rors of the pair in high resolution taking into account the absorption in the
layers. The graph below shows the reflectivity of the mirror, which has in ad-
dition high transmission between 510-550 nm for pumping of the Ti:sapphire
crystal. Each mirror consists of 40 layer pairs of SiO2 and TiO2 fabricated
using ion-beam sputtering [74, 75]. Both mirror reflectivities cover more than
one octave of bandwidth from 580 nm to 1200 nm or 250 to 517 THz, with
an average reflectivity of about 99.9% including the absorption in the layers.
In addition, the mirror dispersion corrects for the second and higher order
dispersion of all intracavity elements such as the Ti:sapphire crystal and the
thin, small angle, BaF2 wedges, for fine adjustment of the dispersion from 650
nm to 1200 nm within the 12 bounces occurring in one roundtrip. The choice
for the lower wavelength boundary in dispersion compensation is determined
and limited by the pump window of Ti:sapphire. The dispersion measure-
ment was performed using white light interferometry [77], up to about 1100
nm because of the silicon detector roll-off. The oscillations in the group delay
of each mirror are about 10 times larger than those of high quality DCMs
covering 350 nm of bandwidth [?]. However, in the average group delay of
both mirrors the oscillations are ideally suppressed due to cancellation by
more than a factor of ten. Therefore, the effective residual reflectivity of the
mirror pair covering one octave, r2, is even smaller than that of conventional
DCMs.

Methods for active dispersion compensation

Various schemes for active pulse compression have been developed based
on the use of liquid-crystal modulators (LCM), acousto-optic modulators
(AOM), and mechanically deformable mirrors.

Dispersion compensation using liquid crystal modulators A pulse
shaping technique [84] based on the use of a LCM for pulse compression offers
the advantage of a large bandwidth (300-1500 nm) and in situ adaptive phase
control, see Figure3.23. In 1997 Yelin et al. [85] demonstrated an adaptive
method for femtosecond pulse compression based on LCM. Strongly chirped
80-fs pulses generated by an oscillator were sent in a 4-f pulse shaper com-
posed of a pair of thin holographic transmission gratings. A programmable
one-dimensional LCM, placed in the Fourier plane of the shaper, was used
as an updatable filter for pulse spectral manipulation. Pulses as short as
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Figure 3.23: Grating Pair and LCM pulse shaper according to Weiner and
Heritage [88]. To shape amplitude and phase two pulse shapers with an
amplitude and phase mask each are necessary.

11 fs (transform-limited duration: 9 fs) have been obtained, employing an
optimization algorithm for adaptive compression based on a search in the
two-dimensional space of second- and third-order dispersion coefficients. In
2001, Karasawa et al. [86] demonstrated pulse compression, down to 5 fs, of
broadband pulses from an argon-filled hollow fiber, using only a LCM for
phase compensation. More recently [51], pulses as short as 3.8 fs have been
achieved through a closed-loop combination of a liquid-crystal spatial light
modulator for adaptive pulse compression and spectral-phase interferome-
try for direct electric-field reconstruction (SPIDER) [87] measurements as
feedback signal.
One problem of the method is pixelization in the Fourier plane owing

to the technology of the liquid-crystal active matrix. Diffraction on pixel
edges and absorption by the black matrix introduce parasitic effects. The re-
quirement that the actual spectral modulation should approximate a smooth
function despite the fixed, finite size of the individual modulator elements,
limits the temporal range over which pulse compression can be achieved [88].
Other problems are related to the optical damage of the LCM, which limits
the maximum pulse energy, and to the high losses introduced by the device.
Various nonpixelated devices have been proposed: Dorrer et al. have re-

ported on an optically addressed LCM (liquid crystal light valve) [89]. The
light valve consists of two continuous transparent electrodes and continuous

Figure by MIT OCW.
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layers of a nematic twisted liquid crystal and of photoconductive Bi12SiO20
(BSO). A local variation of illumination of the BSO layer (in the blue green
spectral region) induces a change in conductivity. When a voltage is applied
between the two electrodes, the variation of the BSO conductivity results
in a change in the voltage drop across the liquid crystal layer. As the bire-
fringence of the liquid crystal is voltage dependent, a local variation of the
refractive index is created, which translates into a variation of the optical
phase of the local spectral component. The light valve is addressed by using
a display device. Pixelation effects are avoided because the light valve itself
is a continuous device. The control of the light valve is more complicated
than for the electrically addressed LCM. Moreover, due to its limited spatial
frequency response, the spectral resolution is limited.

Dispersion compensation using acousto-optic modulators

In 1997 Tournois proposed an acousto-optic programmable dispersive filter
(AOPDF), to provide large dispersion-compensation ranges[91]. The device
is based on a collinear acousto-optic interaction in a birefringent uniaxial
crystal, see Figure 3.24. The acoustic frequency is a variable function of time
and provides control over the group delay of the diffracted optical pulse. At
the same time, the spectral amplitude of the diffracted pulse is driven by
the intensity of the acoustic signal. As demonstrated in Ref. [91], the optical
output Eout(t) of the AOPDF is proportional to the convolution of the optical
input, Ein(t), and the scaled acoustic signal:

Eout(t) ∝ Ein(t)⊗ S(t/α) (3.104)

where the scaling factor α = ∆n(V/c) is the ratio of the speed of sound
to the speed of light times the index difference between the ordinary and
the extraordinary waves. Therefore, by generating the proper function S(t),
it is possible to generate any arbitrary convolution with a temporal reso-
lution given by the inverse of the filter bandwidth. Such device have been
used in kilohertz chirped-pulse amplification laser chains compensating for
gain narrowing and residual phase errors with the AOPDF, resulting in the
generation of 17-fs transform-limited pulses [92]. The total throughput is 10-
50%, depending on the bandwidth of the device. Devices approaching one
octave in bandwidth are possible.
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Figure 3.24: Acousto-optic programable pulse shaper. One element can shape
amplitude and phase of the pulse.

Dispersion compensation using deformable mirrors

Mechanically deformable mirrors can be used for active dispersion control,
as proposed by Heritage et al. [93]. More recently, pulse compression has
been achieved using an electrostatically deformable, gold-coated, silicon ni-
tride membrane mirror, placed in the Fourier plane of a 4f zero-dispersion
stretcher [94]. The membrane was suspended over an array of 39 actuator
electrodes. The potential applied to each actuator generates an electrostatic
attraction between the membrane and the electrode, thus inducing a defor-
mation of the mirror surface, which translates into a modulation of the phase
of the spectral components of the input pulse. The total phase difference is
φ = 2(2π)∆z/λ, where ∆z is the deflection of the mirror. The minimum
radius of curvature of the mirror membrane is given by R = T/P , where T
is the membrane tension and P is the maximum electrostatic pressure. This
limitation of the membrane curvature restricts the possibility of the mir-
ror correction of higher-order phases. The main advantages of this method
are the following: the phase modulation is smoothly varying; reduced losses
due to the high reflectivity (97%) of the mirror; relatively high actuator den-
sity. Experiments have been performed with a mode-locked Ti:sapphire laser,
where the deformable mirror recompressed a 15 fs pulse, previously stretched
to 90 fs by dispersion in glass, back to approximately the bandwidth limit
[94].

Image removed due to copyright restrictions. 
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Recently, dispersion control over a bandwidth of ∼ 220 THz has been
demonstrated by A. Baltuška et al. [95] using a compressor consisting of
a pair of chirped mirrors and a grating dispersion line with a computer-
controlled flexible mirror positioned in the focal plane. The total throughput
of the pulse shaper was less than 12% because of the low diffraction efficiency
of the grating. Using this compressor, the visible-near-IR pulses, generated
by optical parametric amplification, were compressed to a 4-fs duration.

3.7.5 Hollow Fiber Compression Technique

Single mode fiber only allows compression of low energy pulses. In 1996
the group of DeSilvestri in Milan [48] developed a technique that enables
the generation of few-cycle light pulses with energies in the millijoule range.
The technique is based on propagation of laser pulses in a hollow fiber filled
with noble gases (hollow fiber compression technique), see Figure 3.25.The
modes of the hollow fiber are leaky modes, i.e. they experience radiation loss.
However, there is one mode, the EH11mode, which has considerably less loss
than the higher order modes. This mode is used for pulse compression. The
nonlinear index in the fiber can be controlled with the gas pressure. Typical
fiber diameters are 100-500 µm and typical gas pressures are in the range of
0.1-3bar. As in the case of fiber compression it is important to consider the
optimization of nonlinear interaction and dispersion. Both the medium and
waveguide dispersion has to be taken into account. For more detail see ref.
[107].

Figure 3.25: Hollow fiber compression technique [48]
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For the time being, the hollow fiber compression technique is the only
way to generate sub-10fs millijoule pulses. This will change soon with the
advent of parametric chirped pulse amplification.

3.8 Appendix: Sech-Algebra

The hyperbolic secant is defined as

sech(x) =
1

cosh(x)
(3.105)

See Figure 3.26

Figure 3.26: Hyperbolic functions

cosh2(x)− sinh2(x) = 1 (3.106)

sech2(x) = 1− tanh2(x) (3.107)

d

dx
sech(x) = −tanh(x)sech(x) (3.108)

d2

dx2
sech(x) = sech(x)

£
1− 2sech2(x)¤ (3.109)
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−∞
sech(x)dx = π (3.110)Z +∞

−∞
sech2(x)dx = 2 (3.111)Z +∞

−∞
x2sech2(x)dx =

π2

6
(3.112)

function f(t) Fourier-Transform f̃(ω) =
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3.9 Summary

We found, that the lowest order reversible linear effect, GVD, together with
the lowest order reversible nonlinear effect in a homogeneous and isotropic
medium, SPM, leads to the Nonlinear Schrödinger Equation for the envelope
of the wave. This equation describes a Hamiltonian system. The equation
is integrable, i.e., it does possess an infinite number of conserved quantities.
The equation has soliton solutions, which show complicated but persistent os-
cillatory behavior. Especially, the fundamental soliton, a sech-shaped pulse,
shows no dispersion which makes them ideal for long distance optical commu-
nication. Due to the universality of the NSE, this dynamics is also extremely
important for modelocked lasers once the pulses become so short that the
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spectra experience the dispersion and the peak powers are high enough that
nonlinear effects become important. In general, this is the case for sub-
picosecond pulses. Further, we found a perturbation theory, which enables
us to decompose a solution of the NSE close to a fundamental soliton as a
fundamental soliton and continuum radiation. We showed that periodic per-
turbations of the soliton may lead to side-band generation, if the nonlinear
phase shift of the soliton within a period of the perturbation becomes com-
parable to π/4. Soliton perturbation theory will also give the frame work for
studying noise in mode-locked lasers later.
A medium with positive dispersion and self-phase modulation with the

same sign can be used for pulse compression. The major problem in pulse
compression is to find a compressor that can that exactly inverts the group
delay caused by spectral broadening. Depending on bandwith this can be
achieved by grating, prism, chirped mirrors, puls shapers, AOPDFs or a
combination thereof.
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