Computational Cognitive Science
Lecture Notes
LEC # |
TOPICS |
1 |
Introduction (PDF) |
2 |
Foundations of Inductive Learning (PDF) |
3 |
Knowledge Representation: Spaces, Trees, Features (PDF) |
4 |
Knowledge Representation: Language and Logic 1 (PDF) |
5 |
Knowledge Representation: Language and Logic 2 (PDF) |
6 |
Knowledge Representation: Great Debates 1 (PDF) |
7 |
Knowledge Representation: Great Debates 2 (PDF) |
8 |
Basic Bayesian Inference (PDF) |
9 |
Graphical Models and Bayes Nets (PDF) |
10 |
Simple Bayesian Learning 1 (PDF) |
11 |
Simple Bayesian Learning 2 (PDF) |
12 |
Probabilistic Models for Concept Learning and Categorization 1 (PDF) |
13 |
Probabilistic Models for Concept Learning and Categorization 2 (PDF) |
14 |
Unsupervised and Semi-supervised Learning (PDF) |
15 |
Non-parametric Classification: Exemplar Models and Neural Networks 1(PDF - 1.4 MB) |
16 |
Non-parametric Classification: Exemplar Models and Neural Networks 2 (PDF) |
17 |
Controlling Complexity and Occam's Razor 1 (PDF) |
18 |
Controlling Complexity and Occam's Razor 2 (PDF) |
19 |
Intuitive Biology and the Role of Theories (PDF) |
20 |
Learning Domain Structures 1 (PDF - 1.3 MB) |
21 |
Learning Domain Structures 2 (PDF) |
22 |
Causal Learning (PDF) |
23 |
Causal Theories 1 (PDF) |
24 |
Causal Theories 2 (PDF) |
25 |
Project Presentations |