Mathematics for Computer Science

Readings

This section contains the course notes, Mathematics for Computer Science. Chapter 8 is not available on MIT OpenCourseWare.

These notes are courtesy of Eric Lehman, Tom Leighton, and Albert Meyer, and are used with permission.

CHAPTERS

FILES

Complete course notes

(PDF - 6.1MB)

Part I: Proofs

Chapter 1: Propositions

(PDF)

Chapter 2: Patterns of proof

(PDF)

Chapter 3: Induction

(PDF)

Chapter 4: Number theory

(PDF)

Part II: Structures

Chapter 5: Graph theory

(PDF - 1.2MB)

Chapter 6: Directed graphs

(PDF)

Chapter 7: Relations and partial orders

(PDF)

Chapter 8: State machines

 

Part III: Counting

Chapter 9: Sums and asymptotics

(PDF)

Chapter 10: Recurrences

(PDF)

Chapter 11: Cardinality rules

(PDF)

Chapter 12: Generating functions

(PDF)

Chapter 13: Infinite sets

(PDF)

Part IV: Probability

Chapter 14: Events and probability spaces

(PDF)

Chapter 15: Conditional probability

(PDF)

Chapter 16: Independence

(PDF)

Chapter 17: Random variables and distributions

(PDF)

Chapter 18: Expectation

(PDF)

Chapter 19: Deviations

(PDF)

Chapter 20: Random walks

(PDF)


Recitations

This section contains recitation problems and notes, which include solutions.

REC #

TOPICS

PROBLEMS

NOTES

1

Logic, proving an implication

(PDF)

(PDF)

2

Induction

(PDF)

(PDF)

3

State machines

(PDF)

(PDF)

4

Greatest common divisor

(PDF)

(PDF)

5

Exponentiation, modular arithmetic, RSA

(PDF)

(PDF)

6

Graph basics

(PDF)

(PDF)

7

Stable marriage problem

(PDF)

(PDF)

8

Build-up error, the grow algorithm

(PDF)

(PDF)

9

Traveling salesperson problem

(PDF)

(PDF)

10

Analysis of two networks, routing in a Beneš network

(PDF)

(PDF)

11

Equivalence relations, chains, topological sort

(PDF)

(PDF)

12

The L-tower problem, double sums

(PDF)

(PDF)

13

Asymptotic notation, asymptotic equivalence

(PDF)

(PDF)

14

Guessing a particular solution, linear recurrences

(PDF)

(PDF)

15

Counting problems, pigeonhole principle

(PDF)

(PDF)

16

Combinatorial proof, more counting

(PDF)

(PDF)

17

Probability, Monty Hall problem

(PDF)

(PDF)

18

Total probability law

(PDF)

(PDF)

19

Bayes' rule

(PDF)

(PDF)

20

Philosophy of probability

(PDF)

(PDF)

21

Conditional expectation and total expectation

(PDF)

(PDF)

22

Expected value rule for functions of random variables, properties of variance

(PDF)

(PDF)

23

Probability theorems

(PDF)

(PDF)

Assignments

PROBLEM SETS

Problem set 1 (PDF)

Problem set 2 (PDF)

Problem set 3 (PDF)

Problem set 4 (PDF)

Problem set 5 (PDF)

Problem set 6 (PDF)

Problem set 7 (PDF)

Problem set 8 (PDF)

Problem set 9 (PDF)

Problem set 10 (PDF)

Problem set 11 (PDF)

Problem set 12 (PDF)

Exams

All exams and solutions are courtesy of the instructors named on the first page, and are used with permission. Solutions to the final exam are not available.

EXAMS

SOLUTIONS

Midterm practice problems (PDF)

(PDF)

Midterm (PDF)

(PDF)

2004 final exam (PDF)

(PDF)

2006 final exam (PDF)

(PDF)

2008 final exam (PDF)

(PDF)

Final exam (PDF)