Optical Engineering

Lecture Notes

Lecture notes have been posted whenever possible. Not all lectures are available for distribution.

LEC #

TOPICS

1

Introduction: Statistical Optics, Inverse Problems (PDF - 1.3 MB)

2

Fourier Optics Overview (PDF - 1.4 MB)

3

Random Variables: Basic Definitions, Moments

4

Random Variables: Transformations, Gaussians

5

Examples: Probability Theory & Statistics

6

Random Processes: Definitions, Gaussian, Poisson

7

Examples: Gaussian Processes

8

Random Processes: Analytic Representation

9

Examples: Complex Gaussian Processes

10

1st-Order Light Statistics

11

Examples: Thermal & Laser Light

12

2nd-Order Light Statistics: Coherence

13

Example: Integrated Intensity

14

The van Cittert-Zernicke Theorem

15

Example: Diffraction From An Aperture

16

The Intensity Interferometer

Speckle (PDF - 2.4 MB)

17

Examples: Stellar Interferometer, Radio Astronomy,
Optical Coherence Tomography

18

Effects of Partial Coherence on Imaging

19

Information Theory: Entropy, Mutual Information (PDF)

20

Example: Gaussian Channels

21

Convolutions, Sampling, Fourier Transforms

Information-Theoretic View of Inverse Problems (PDF)

22

Imaging Channels

Regularization

23

Inverse Problem Case Study: Tomography

Radon Transform, Slice Projection Theorem

24

Filtered Backprojection

25

Super-Resolution and Image Restoration

26

Information-Theoretic Performance of Inversion Methods

Assignments

Homework 1: Fourier Optics Overview (PDF)

Homework 2: Introductory Probability (PDF)

Homework 3: More Probability (PDF)

Homework 4: Random Processes (PDF)