1. Write in detail about various types of instructions? Give examples for each one.
Instruction Formats
• It is the function of the control unit within the CPU to interpret each instruction code

• The bits of the instruction are divided into groups called fields

• The most common fields are:

· Operation code

· Address field – memory address or a processor register

· Mode field – specifies the way the operand or effective address is

determined

• A register address is a binary number of k bits that defines one of 2k registers in

the CPU

• The instructions may have several different lengths containing varying number

of addresses

• The number of address fields in the instruction format of a computer depends

on the internal organization of its registers

• Most computers fall into one of the three following organizations:

· Single accumulator organization

· General register organization

· Stack organization
• Single accumulator org. uses one address field

ADD X 

 AC ← AC + M[X]

• The general register org. uses three address fields

ADD R1, R2, R3
R1 ← R2 + R3
• Can use two rather than three fields if the destination is assumed to be one of

the source registers

• Stack org. would require one address field for PUSH/POP operations and none

for operation-type instructions

PUSH X

ADD

• Some computers combine features from more than one organizational structure

Example: X = (A+B) * (C + D)

Three-address instructions
ADD R1, A, B 

R1 ← M[A] + M[B]

ADD R2, C, D


 R2 ← M[C] + M[D]

MUL X, R1, R2

 M[X] ← R1 * R2

Two-address instructions
MOV R1, A


 R1 ← M[A]

ADD R1, B 


R1 ← R1 + M[B]

MOV R2, C


 R2 ← M[C]

ADD R2, D 


R2 ← R2 + D

MUL R1, R2


 R1 ← R1 * R2

MOV X, R1 


M[X] ← R1

One-address instructions

LOAD A 


AC ← M[A]

ADD B 


AC ← AC + M[B]

STORE T


M[T] ← AC

LOAD C


 AC ← M[C]

ADD D 


AC ← AC + M[D]

MUL T 


AC ← AC * M[T]

STORE X 


M[X] ← AC

Zero-address instructions

PUSH A


 TOS ← A

PUSH B


 TOS ←B

ADD 



TOS ← (A +B)

PUSH C 


TOS ← C

PUSH D 


TOS ← D

ADD 



TOS ← (C + D)

MUL 



TOS ← (C + D) * (A + B)

POP X 


M[X] ← TOS

RISC instructions
LOAD R1, A 


R1 ← M[A]

LOAD R2, B


 R2 ← M[B]

LOAD R3, C 


R3 ← M[C]

LOAD R4, D 


R4 ← M[D]

ADD R1, R1, R2 

R1 ← R1 + R2

ADD R3, R3, R4 

R3 ← R3 + R4

MUL R1, R1, R3 

R1 ← R1 * R3

STORE X, R1 

M[X] ← R1
2. Explain various addressing modes with numerical example?

Addressing Modes

Many of the instructions which a computer actually executes during the running of a program concern the movement of data to and from memory. It is not possible simply to specify fixed addresses within each instruction, as this would require the location of data to be known at the time when the program was written. This is not possible for several reasons.

· When a program is read from disk, it will be put in memory in a positionwhich cannot be predicted in advance. Hence, the location of any data in the program cannot be known in advance.

· Similarly, data which has been previously archived to files on disk ortape will be loaded into memory at a position which cannot be known inadvance.

· If the data we wish to use will be read from an input device, then wecannot know in advance where in memory it will be stored.

· Many calculations involve performing the same operation repeatedly on alarge quantity of data (for example, modifying an image which consists ofover a million pixels). If each instruction operated on a fixed memorylocation, then the program would have to contain the same instructionmany times, once for each pixel.

We therefore need different strategies for specifying the location of data.

Immediate addressing

The data itself, rather than an address, is given as the operand(s) of the

instruction.
Direct or Absolute addressing

A fixed address is specified.

Implied addressing

The location of the data is implied by the instruction itself, so no operands need to be given. For example, a computer might have the instruction INCA, increment the accumulator.

Relative addressing

The location of the data is specified relative to the current value of the program counter. This is useful for specifying the location of data which is given as part of the program.

Indirect addressing
A memory location is given which holds another memory location. This second memory location holds the actual data. This mechanism solves the problems caused by reading data from file or an input device during program execution.

Indexed addressing

The location of the data is calculated as the sum of an address specified by one of the previous methods, and the value of an index register. This allows an array of data (for example, an image) to be accessed repeatedly by the same sequence of instructions.

· The addressing mode specifies a rule for interpreting or modifying the addressfield of the instruction before the operand is actually referenced

· The decoding step in the instruction cycle determines the operation to beperformed, the addressing mode of the instruction, and the location of theoperands

· Two addressing modes require no address fields – the implied mode and

· immediate mode Implied mode: the operands are specified implicitly in the definition of theinstruction – complement accumulator or zero-address instructions

· Immediate mode: the operand is specified in the instruction

· Register mode: the operands are in registers

· Register indirect mode: the instruction specifies a register that contains theaddress of the operand

· Auto increment or auto decrement mode: similar to the register indirect mode

· Direct address mode: the operand is located at the specified address given

· Indirect address mode: the address specifies the effective address of the operand

· Relative address mode: the effective address is the summation of the addressfield and the content of the PC

· Indexed addressing mode: the effective address is the summation of an indexregister and the address field

· Base register address mode: the effective address is the summation of a baseregister and the address field

Numerical Example
[image: image1.emf]
Fig: numerical example for various addressing modes
[image: image2.emf]
tabular list of numerical example

3. Explain in detail about status bits in program control register?
Status Bit Conditions

It is sometimes convenient to supplement the ALU circuit in the CPU with a status register where status bit conditions can be stored for further analysis. Status bits are also called condition-code bits or flag bits. Figure 8-8 shows the block diagram of an 8-bit ALU with a 4-bit status register. The four status bits are symbolized by C. S, Z, and V. The bits are set or cleared as a result of an operation performed in the ALU.

1. Bit C (carry) is set to 1 if the end carry C8 is 1. It is cleared to 0 if the carry is 0.
2. Bit S (sign) is set to 1 if the highest-order bit F, is 1. It is set to 0 if the bit is 0.
3. Bit Z (zero) is set to 1 ifthe output ofthe ALU contains all O's. !t is cleared to 0 otherwise. In other words, Z = 1 if the output is zero and Z = 0 if the output is not zero.
4. Bit V (overflow) is set to 1 if the exclusive-OR of the last two carries is equal to 1, and cleared to 0 otherwise. This is the condition for an overflow when negative numbers are in 2's complement For the 8-bit ALU, V = 1 if the output is greater than + 127 or less than - 128.
[image: image3.emf]
Figure: Status register bits.
The status bits can be checked after an ALU operation to determine certain relationships that exist between the values of A and B . If bit V is set after the addition of two signed numbers, it indicates an overflow condition. If Z is set after an exclusive-OR operation, it indicates that A = B . This is so because x E!) x = 0, and the exclusive-OR of two equal operands gives an all-0' s result which sets the Z bit. A single bit in A can be checked to determine if it is 0 or 1 by masking all bits except the bit in question and then checking the Z status bit. For example,         let A= 101x ll00, where x is the bit to be checked. The AND operation of A with B = 00010000 produces a result OOOxOOOO. If x = 0, the Z status bit is set, but if x = 1, the Z bit is cleared since the result is not zero. inserted to define the 0 state. 
4. Explain in detail about conditional branch instructions?

Following Table gives a list of the most common branch instructions. Each mnemonic is constructed with the letter B (for branch) and an abbreviation of the condition name. When the opposite condition state is used, the letter N (for no) is Thus BC is Branch on Carry, and BNC is Branch on No Carry. If the stated condition is true, program control is transferred to the address specified by the instruction. If not, control continues with the instruction that follows. The conditional instructions can be associated also with the jump, skip, call, or return type of program control instructions.
[image: image4.emf]
5. Explain about strobe control and handshaking modes of asynchronous data transfer modes? 

The internal operations in a digital system are synchronized by means of clock pulses supplied by a common pulse generator. Clock pulses are applied to all registers within a unit and all data transfers among internal registers occur simultaneously during the occurrence of a clock pulse. Two units, such as a CPU and an VO interface, are designed independently of each other. If the registers in the interface share a common clock with the CPU registers, the transfer between the two units is said to be synchronous. In most cases, the internal timing in each unit is independent from the other in that each uses its own private clock for internal registers. In that case, the two units are said to be asynchronous to each other. This approach is widely used in most computer systems.
Strobe Control

The strobe control method of asynchronous data transfer employs a single control line to time each transfer. The strobe may be activated by either the source or the destination unit. Figure shows a source-initiated transfer.
The data bus carries the binary information from source unit to the destination unit. Typically, the bus has multiple lines to transfer an entire byte or word. The strobe is a single line that informs the destination unit when a valid data word is available in the bus.
[image: image5.emf]
Fig: Source initiated strobe for data transfer.
As shown in the timing diagram of Fig. (b), the source unit first places the data on the data bus. After a brief delay to ensure that the data settle to a steady value, the source activates the strobe pulse. The information on the data bus and the strobe signal remain in the active state for a sufficient time period to allow the destination unit to receive the data. Often, the destination unit uses the falling edge of the strobe pulse to transfer the contents of the data bus into one of its internal registers. The source removes the data from the bus a brief period after it disables its strobe pulse. Actually, the source does not have to change the information in the data bus. The fact that the strobe signal is disabled indicates that the data bus does not contain valid data. New valid data will be available only after the strobe is enabled again.
Following Figure shows a data transfer initiated by the destination unit. In this case the destination unit activates the strobe pulse, informing the source to provide the data. The source unit responds by placing the requested binary information on the data bus. The data must be valid and remain in the bus long enough for the destination unit to accept it. The falling edge of the strobe pulse can be used again to trigger a destination register. The destination unit then disables the strobe. The source removes the data from the bus after a predetermined time interval.

[image: image6.emf]
Fig: Destination initiated strobe for data transfer.
Handshaking
The disadvantage of the strobe method is that the source unit that initiates the transfer has no way of knowing whether the destination unit has actually received the data item that was placed in the bus. Similarly, a destination unit that initiates the transfer has no way of knowing whether the source unit has actually placed the data on the bus. The handshake method solves this problem by introducing a second control signal that provides a reply to the unit that initiates the transfer. The basic principle of the two-wire handshaking method of data transfer is as follows. One control line is in the same direction as the data flow in the bus from the source to the destination. It is used by the source unit to inform the destination unit whether there are valid data in the bus. The other control line is in the other direction from the destination to the source.

It is used by the destination unit to inform the source whether it can accept data. The sequence of control during the transfer depends on the unit that initiates the transfer.

Following Figure shows the data transfer procedure when initiated by the source. The two handshaking lines are data valid, which is generated by the source unit, and data accepted, generated by the destination unit. The timing diagram shows the exchange of signals between the two units. The sequence of events listed in part (c) shows the four possible states that the system can be at any given time. The source unit initiates the transfer by placing the data on the bus and enabling its data valid signal. The data accepted signal is activated by the destination unit after it accepts the data from the bus. The source unit then disables its data valid signal, which invalidates the data on the bus. The destination unit then disables its data accepted signal and the system goes into its initial state. The source does not send the next data item until after the destination unit shows its readiness to accept new data by disabling its data accepted signal. This scheme allows arbitrary delays from one state to the next and permits each unit to respond at its own data transfer rate. The rate of transfer is determined by the slowest unit.
[image: image7.emf]
Fig:Source initiated transfer using handshaking
The destination-initiated transfer using handshaking lines is shown in Fig. Note that the name of the signal generated by the destination unit has been changed to ready for data to reflect its new meaning. The source unit in this case does not place data on the bus until after it receives the ready for data signal from the destination unit. From there on, the handshaking procedure follows the same pattern as in the source-initiated case. Note that the sequence of events in both cases would be identical if we consider the ready for data signal as the complement of data accepted. In fact, the only difference between the source-initiated and the destination-initiated transfer is in their choice of initial state.

[image: image8.emf]
Fig:  Destination  initiated transfer using handshaking
6. Explain about various modes of transfer

Programmed I/O
The simplest strategy for handling communication between the CPU and an I/O module is programmed I/O. Using this strategy, the CPU is responsible for all communication with I/O modules, by executing instructions which control the attached devices, or transfer data.

For example, if the CPU wanted to send data to a device using programmed I/O,

it would first issue an instruction to the appropriate I/O module to tell it to expect data. The CPU must then wait until the module responds before sending the data. If the module is slower than the CPU, then the CPU may also have to wait until the transfer is complete. This can be very inefficient. Another problem exists if the CPU must read data from a device such as a keyboard. Every so often the CPU must issue an instruction to the appropriate I/O module to see if any keys have been pressed. This is also extremely inefficient. Consequently this strategy is only used in very small micro processor controlled devices.
Interrupt Driven I/O
An alternative to the CPU constantly monitoring the flag is to let the interface inform the computer when it is ready to transfer data. This mode of transfer uses the interrupt facility. While the CPU is running a program, it does not check the flag. However, when the flag is set, the computer is momentarily interrupted from proceeding with the current program and is informed of the fact that the flag has been set. The CPU deviates from what it is doing to take care of the input or output transfer. After the transfer is completed, the computer returns to the previous program to continue what it was doing before the interrupt.

The CPU responds to the interrupt signal by storing the return address from the program counter into a memory stack and then control branches to a service routine that processes the required VO transfer. The way that the processor chooses the branch address of the service routine varies from one unit to another. In principle, there are two methods for accomplishing this. One is called vectored interrupt and the other, no vectored interrupt. In a non vectored interrupt, the branch address is assigned to a fixed location in memory. In a vectored interrupt, the source that interrupts supplies the branch information to the computer. This information is called the interrupt vector.
DMA Transfer

Transfer of data under programmed 110 is between CPU and peripheral. In direct memory access (DMA), the interface transfers data into and out of the memory unit through the memory bus. The CPU initiates the transfer by supplying the interface with the starting address and the number of words needed to be transferred and then proceeds to execute other tasks. When the transfer is made, the DMA requests memory cycles through the memory bus. When the request is granted by the memory controller, the DMA transfers the data directly into memory. The CPU merely delays its memory access operation to allow the direct memory 110 transfer. Since peripheral speed is usually slower than processor speed, I/O-memory transfers are infrequent compared to processor access to memory.
7. Explain bout DMA and DMA controller with neat diagrams?

Although interrupt driven I/O is much more efficient than program controlled I/O, all data is still transferred through the CPU. This will be inefficient if large quantities of data are being transferred between the peripheral and memory. The transfer will be slower than necessary, and the CPU will be unable to perform any other actions while it is taking place.

Many systems therefore use an additional strategy, known as direct memory access (DMA). DMA uses an additional piece of hardware - a DMA controller. The DMA controller can take over the system bus and transfer data between an I/O module and main memory without the intervention of the CPU. Whenever the CPU wants to transfer data, it tells the DMA controller the direction of the transfer, the I/O module involved, the location of the data in memory, and the size of the block of data to be transferred. It can then continue with other instructions and the DMA controller will interrupt it when the transfer is complete. The CPU and the DMA controller cannot use the system bus at the same time, so some way must be found to share the bus between them. One of two methods is normally used.

Burst mode
The DMA controller transfers blocks of data by halting the CPU and controlling the system bus for the duration of the transfer. The transfer will be as quick as the weakest link in the I/O module/bus/memory chain, as data does not pass through the CPU, but the CPU must still be halted while the transfer takes place.
Cycle stealing
The DMA controller transfers data one word at a time, by using the bus during a part of an instruction cycle when the CPU is not using it, or by pausing the CPU for a single clock cycle on each instruction. This may slow the CPU down slightly overall, but will still be very efficient.
[image: image9.jpg]
Fig: Block diagram of DMA controller

8. With a neat diagram show the DMA transfer in a computer system?

There are three independent channels for DMA transfers. Each channel receives its trigger for the transfer through a large multiplexer that chooses from among a large number of signals. When these signals activate, the transfer occurs. The DMAxTSELxbits of the DMA Control Register 0 (DMACTL0). The DMA controller receives the trigger  signal but will ignore it under certain conditions. This is necessary to reserve the memory bus for reprogramming and non maskable interrupts etc. The controller also handles conflicts for simultaneous triggers. The priorities can be adjusted using the DMA Control Register 1 (DMACTL1). When multiple triggers happen simultaneously,they occur in order of module priority. The DMA trigger is then passed to the module whose trigger activated. The DMA channel will copy the data from the starting memory location or block to the destination memory location or block.
[image: image10.png]




Fig: DMA transfer in a computer system

9. Explain about IOP?

A computer may incorporate one or more external processors and assign them the task of communicating directly with all I/O devices. An input-output processor (IOP) may be classified as a processor with direct memory access capability that communicates with I/O devices. In this configuration, the computer system can be divided into a memory , and a number of processors comprised of the CPU and one or more IOPs. Each IOP takes care of input and output tasks, relieving the CPU from the housekeeping chores involved in I/O transfers.
The IOP is similar to a CPU except that it is designed to handle the details of I/O processing. Unlike the DMA controller that must be set up entirely by the CPU, the IOP can fetch and execute its own instructions. IOP instructions are specially designed to facilitate I/O transfers. In addition, the IOP can perform other processing tasks, such as arithmetic, logic, branching, and code translation.
The block diagram of a computer with two processors is shown in Figure. The memory unit occupies a central position and can communicate with each processor by means of direct memory access. The CPU is responsible for processing data needed in the solution of computational tasks. The IOP provides a path for transfer of data between various peripheral devices and the memory unit.

[image: image11.emf]
Fig: block diagram of IOP

10. Explain about CPU-IOP Communication?

There are many form of the communication between CPU and IOP. These are depending on the particular computer considered. In most cases the memory unit acts as a message center where each processor leaves information for the other. To appreciate the operation of a typical IOP, we will illustrate by a specific example the method by which the CPU and IOP communicate. This is a simplified example that omits many operating details in order to provide an overview of basic concepts.

The sequence of operations may be carried out as shown in the flowchart. The CPU sends an instruction to test the IOP path. The IOP responds by inserting a status word in memory for the CPU to check. The bits of the status word indicate the condition of the IOP and I/O device, such as IOP overload condition, device busy with another transfer, or device ready for I/O transfer. The CPU refers to the status word in memory to decide what to do next. If all is in order, the CPU sends the instruction to start I/O transfer. The memory address received with this instruction tells the IOP where to find its program.
[image: image12.emf]
Fig: CPU-IOP Communication
11. Briefly explain about the memory hierarchy?

Memory Hierarchy is to obtain the highest possible access speed while minimizing the total cost of the memory system. Computer systems always combine several different types of the memory devices discussed above. This is because none alone can provide all the required characteristics. Ideally computer memory should be the following.

a) Very fast

b) small

c) Consume low power

d) Robust and non-volatile (remember its contents even when switched off)

e) Cheap

Unfortunately these aims conflict, and different types of memory device offer different benefits and drawbacks. 

Internal CPU memory 

This is very fast. However, it is bulky, expensive, consumes a lot of power, and the contents are lost when power is removed.
Main store

Relatively fast, but still bulky, expensive and volatile.

Magnetic disk

These can store large quantites of data cheaply and in a small space. Furthermore, these can be used for permament/semi-permanent storage, as the data is not lost when power is removed. However, the access time is much slower than main memory.

Magnetic tape and optical storage

These are both very cheap and can store huge quantities of data in a small space. Typically they use removable media, and so are ideal for permanent storage of data. However, access times are extremely long. By combining different types of memory in a single system, the designer can get the best of all worlds and build a relatively low cost system with a high capacity and a speed almost that of a huge main memory.

Semiconductor (main) Memory

All of the memory used as main store in a modern computer is implemented as semiconductors fabricated on wafers of silicon. Semiconductor memory is fast and easy to use. To fulfill the needs of modern computer systems it is becoming increasingly dense (more bits per chip) and cheap.

A semiconductor memory chip consists of a large number of cells organized into an

array, and the logic necessary to access any array in the cell easily. Semi-conductor memory may be classed according to the mechanism used by each cell to store data. The simplest type of memory is called static memory. In static memory each cell uses a flip-flop made from four or six transistors. The data in each cell is remembered until the power is switched off. Static memory is easy to use and reliable, but is relatively bulky, slow and expensive.

Most computer systems therefore use dynamic memory as their main store. Dynamic memory uses just a single transistor per cell, and is therefore denser, faster and cheaper. Unfortunately each cell gradually forgets the data stored in it, and so extra circuitry must be used to continually refresh the cell
[image: image13.emf]
Fig: memory hierarchy in a computer system

12. Write about main memory and draw RAM and ROM chips?

• A memory unit is a collection of storage cells together with associated circuits to transfer information in and out of storage

• The memory stores binary data in groups of bits called words

• A word can represent an instruction code or alphanumeric characters

• Each word in memory is assigned an address from 0 to 2k –1, where k is the number of address lines

• A decoder inside the memory accepts an address opens the paths needed to select the bits of the specified word
The memory capacity is stated as the total number of bytes that can be

stored

• Refer to the number of bytes using one of the following

o K (kilo) = 210

o M (mega) = 220

o G (giga) = 230

• 64K = 210, 2M = 221, and 4G = 232

• In random-access memory (RAM) the memory cells can be accessed for information from any desired random location

• The process of locating a word in memory is the same and requires an equal amount of time no matter where the cells are located physically in memory

• Communication between memory and its environment is achieved via data input and output lines, address selections lines, and control lines

• The n data input lines provide the information to be stored in memory

• The n data output lines supply the information coming out of memory

• The k address lines provide a binary number of k bits that specify a specific word or location

• The two control lines specify the direction of transfer – either read or write
RAM and ROM Chips

A RAM chip is better suited for communication with the CPU if it has one or more control inputs that select the chip only when needed. Another common feature is a bidirectional data bus that allows the transfer of data either from memory to CPU during a read operation or from CPU to memory during a write operation. A bidirectional bus can be constructed with three-state buffers. A three-state buffer output can be placed in one of three possible states: a signal equivalent to logic 1, a signal equivalent to logic 0, or a high impedance state. The logic 1 and 0 are normal digital signals. The high impedance state behaves like an open circuit, which means that the output does not carry a signal and has no logic significance.
[image: image14.emf]
Fig: Typical RAM Chip

[image: image15.emf]
Function Table

A ROM chip is organized externally in a similar manner. However, since a ROM can only read, the data bus can only be in an output mode. The block diagram of a ROM chip is shown in Fig.. For the same-size chip, it is possible to have more bits of ROM than of RAM, because the internal binary cells in ROM occupy less space than in RAM. For this reason, the diagram specifies a 512-byte ROM, while the RAM has only 128 bytes. The nine address lines in the ROM chip specify any one of the 512 bytes stored in it. The two chip select inputs must be CS1 = 1 and CS2 = 0 for the unit to operate. Otherwise, the data bus is in a high-impedance state. There is no need for a read or write control because the unit can only read. Thus when the chip is enabled by the two select inputs, the byte selected by the address lines appears on the data bus.
[image: image16.emf]
Fig: typical  ROM Chip

13. Explain about associative memory?
The time required to find an item stored in memory can be reduced considerably if stored data can be identified for access by the content of the data itself rather than by an address. A memory unit accessed by content is called an associative memory or content addressable memory (CAM). This type of memory is accessed simultaneously and in parallel on the basis of data content rather than by specific address or location. When a word is written in an associative memory, no address is given. The memory is capable of finding an empty unused location to store the word. When a word is to be read from an associative memory, the content of the word, or part of the word, is specified. The memory locates all words which match the specified content and marks them for reading.
Because of its organization, the associative memory is uniquely suited to do parallel searches by data association. Moreover, searches can be done on an entire word or on a specific field within a word. An associative memory is more expensive than a random access memory because each cell must have storage capability as well as logic circuits for matching its content with an External argument. For this reason, associative memories are used in application where the search time is very critical and must be very short.
[image: image17.emf]
Fig: block diagram of associative memory

The block diagram of an associative memory is shown in Fig. 12-6. It consists of a memory array and logic for m words with n bits per word. The argument register A and key register K each have n bits, one for each bit of a word. The match register M has m bits, one for each memory word. Each word in memory is compared in parallel with the content of the argument register. The words that match the bits of the argument register set a corresponding bit in the match register. After the matching process, those bits in the match register that have been set indicate the fact that their corresponding words have been matched. Reading is accomplished by a sequential access to memory for those words whose corresponding bits in the match register have been set.
The key register provides a mask for choosing a particular field or key in the argument word. The entire argument is compared with each memory word if the key register contains all l' s. Otherwise, only those bits in the argument that have l's in their corresponding position of the key register are compared. thus the key provides a mask or identifying piece of information which specifies how the reference to memory is made. To illustrate with a numerical example, suppose that the argument register A and the key register K have the bit configuration shown below. Only the three leftmost bits of A are compared with memory words because K has 1's in these positions.

A 

101 1 1 1 10 0

K

111 000000

Word1

 100 1 1 1 10 0
no match

Word 2
101 000001

 match

Word 2 matches the unmasked argument field because the three leftmost bits of the argument and the word are equal.
14. Briefly explain about Cache memory?

Analysis of a large number of typical programs has shown that the references to memory at any given interval of time tend to be confined within a few localized areas in memory. This phenomenon is known as the property of locality of reference.


If the active portions of the program and data are placed in a fast small memory, the average memory access time can be reduced, thus reducing the total execution time of the program. Such a fast small memory is referred to as a cache memory. It is placed between the CPU and main memory. The cache memory access time is less than the access time of main memory by a factor of 5 to 10. The cache is the fastest component in the memory hierarchy and approaches the speed of CPU components.


The performance of cache memory is frequently measured in terms of a quantity called hit ratio. When the CPU refers to memory and finds the word in cache, it is said to produce a hit. If the word is not found in cache, it is in main memory and it counts as a miss. The ratio of the number of hits divided by the total CPU references to memory (hits plus misses) is the hit ratio. The hit ratio is best measured experimentally by running representative programs in the computer and measuring the number of hits and misses during a given interval of time. Hit ratios of 0.9 and higher have been reported. This high ratio verifies the validity of the locality of reference property.

15. Explain about associative and direct mapping in cache memory?

Associative Mapping

The fastest and most flexible cache organization uses an associative memory. This organization is illustrated in Fig. The associative memory stores both the address and content (data) of the memory word. This permits any location in cache to store any word from main memory. The diagram shows three words presently stored in the cache. The address value of 15 bits is shown as a five-digit octal number and its corresponding 12 -bit word is shown as a four-digit octal number. A CPU address of 15 bits is placed in the argument register and the associative memory is searched for a matching address. If the address is found, the corresponding 12-bit data is read and sent to the CPU.

If no match occurs, the main memory is accessed for the word. The address-- data pair is then transferred to the associative cache memory. If the cache is full, an address--data pair must be displaced to make room for a pair that is needed and not presently in the cache. The decision as to what pair is replaced is determined from the replacement algorithm that the designer chooses for the cache. A simple procedure is to replace cells of the cache in round-robin order whenever a new word is requested from main memory. This constitutes a first-in first-out (FIFO) replacement policy.
[image: image18.emf]
Fig: Associative mapping

Direct Mapping
Associative memories are expensive compared to random-access memories because of the added logic associated with each cell. The possibility of using a random-access memory for the cache is investigated in Fig. 12-12. The CPU address of 15 bits is divided into two fields. The nine least significant bits constitute the index field and the remaining six bits form the tag field. The figure shows that main memory needs an address that includes both the tag and the index bits. The number of bits in the index field is equal to the number of address bits required to access the cache memory.

In the general case, there are 2' words in cache memory and 2" words in main memory. The n-bit memory address is divided into two fields: k bits for the index field and n - k bits for the tag field. The direct mapping cache organization uses the n-bit address to access the main memory and the k-bit index to access the cache. 
The internal organization of the words in the cache memory is as shown in Fig. Each word in cache consists of the data word and its associated tag. When a new word is first brought into the cache, the tag bits are stored alongside the data bits. When the CPU generates a memory request, the index field is used for the address to access the cache. The tag field of the CPU address is compared with the tag in the word read from the cache. If the two tags match, there is a hit and the desired data word is in cache. If there is no match, there is a miss and the required word is read from main memory. It is then stored in the cache together with the new tag, replacing the previous value. The disadvantage of direct mapping is that the hit ratio can drop considerably if two or more words whose addresses have the same index but different tags are accessed repeatedly. However, this possibility is minimized by the fact that such words are relatively far apart in the address range (multiples of 512 locations in this example.)
[image: image19.emf]Fig: Addressing relationships between main and cache memories.
[image: image20.emf]
Fig: Direct mapping cache organization.
