Introduction to Communication, Control, and Signal Processing

Readings

Course Notes: Signals, Systems and Inference

This is a subject that combines topics which have traditionally been taught separately, so there is no single text that is appropriate for it. We will rely largely on the 6.011 lecture notes, Signals, Systems and Inference.

Please note that Chapter 1 is not available on MIT OpenCourseWare.

CHAPTERS

NOTES

Complete course notes

(PDF - 3.2MB)

Table of contents

(PDF)

Chapter 1: Introduction

 

Chapter 2: Signals and systems

(PDF)

Chapter 3: Transform representation of signals and linear, time-invariant (LTI) systems

(PDF)

Chapter 4: State-space models

(PDF)

Chapter 5: Properties of LTI state-space models

(PDF)

Chapter 6: State observers and state feedback

(PDF)

Chapter 7: Probabilistic models

(PDF)

Chapter 8: Estimation with minimum mean square error

(PDF)

Chapter 9: Random processes

(PDF)

Chapter 10: Power spectral density

(PDF)

Chapter 11: Wiener filtering

(PDF)

Chapter 12: Pulse amplitude modulation (PAM), quadrature amplitude modulation (QAM)

(PDF)

Chapter 13: Hypothesis testing

(PDF)

Chapter 14: Signal detection

(PDF)

Exams

QUIZ #

QUIZZES

Quiz 1

Question booklet (PDF)

Answer booklet (PDF)

Solutions (PDF)

Quiz 2

Question booklet (PDF)

Answer booklet (PDF)

Solutions (PDF)

Final exam

Question booklet (PDF)

Answer booklet (PDF)

Solutions (PDF)