Systems, Modeling, and Control II

Lecture Notes

Lecture 2 refers to the following MATLABĀ® files for solving ODEs: (ZIP) (The ZIP file contains: shaft_w_coulomb_viscous.m, shaftcv_kernel.m, and shaftcv_solve.m files.)

SES #

TOPICS

NOTES

1

Introduction; mechanical elements

(PDF)

2

Solving ODEs; cruise control

(PDF)

3

Laplace transforms; transfer functions; translational and rotational mechanical transfer functions

(PDF)

4

Electrical and electro-mechanical system transfer functions

(PDF)

5

DC motor transfer function

(PDF)

6

Poles and zeros; 1st order systems

(PDF)

7

2nd order systems

(PDF)

8

2nd order systems (cont.)

(PDF)

9

More than 2 poles; zeros; nonlinearities and linearization

(PDF)

10

Examples of modeling & transfer functions

(PDF)

11

Block diagrams; feedback

(PDF)

12

Analysis of feedback systems

(PDF)

13

Quiz 1

14

Stability; Routh-Hurwitz criterion

(PDF)

15

Stability analysis

Please see the following selections from MathWorks, Inc. "Control System Toolbox Getting Started Guide." (PDF - 1.8 MB)

Chapter 1, all
Chapter 2, pp. 1-9 and 23-25
Chapter 3, pp. 1-9, 17-20, and 32-39

16

Steady state error analysis

(PDF)

17

Root locus introduction

(PDF)

18

Root locus example

(PDF)

19

Design of transient response using root locus

(PDF)

20

Positive feedback

(PDF)

21

Examples of design via root locus

(PDF)

22

Steady-state error compensation

(PDF)

23

Transient response compensation; transient and steady-state error compensation

(PDF)

24

Compensation examples

(PDF)

25

Feedback compensation and its physical realization

(PDF)

26

Feedback design examples

(PDF)

27

Quiz 2

28

Frequency response; bode plots

(PDF)

29

Bode plot examples

(PDF)

30

Gain margin and phase margin

(PDF)

31

Design using the frequency response; lead, lag, lead-lag compensators

(PDF)

32

The state-space representation

(PDF)

33

Solving the state equations in the time and space domains

(PDF)

34

State equation examples

35

Stability and steady-state error in state space; controllability and observability

36

Optimal control; the minimum time problem

37

Review: modeling and transfer functions

(PDF)

38

Review: root locus, feedback design

(PDF)

39

Review: frequency domain and design

(PDF)

Labs

A brief description of the 2.004 lab facilities and rules is provided for reference: (PDF)

The first six labs deal with a physical plant consisting of a rotational flywheel and motor, detailed in this handout: (PDF) (Courtesy Prof. Emanuel Sachs. Used with permission.)

The motor specification sheet may be found here (PDF)

Lab 1: Coulomb and Viscous Friction (PDF)

Lab 2: Characterization of Lab System Components (PDF)

Lab 3: Construction of a Proportional Velocity Controller (PDF)

Lab 4: Closed-loop Performance of a Proportional Velocity Controller (PDF)

Lab 5: Elimination of Steady-state Error Using Integral Control Action (PDF)

Lab 6: Closed-loop Position Control, and the Effect of Derivative Control Action (PDF)

The final set of lab projects involves the design of an active damping system for a skyscraper, including a set of MATLABĀ® files for simulating the tower and its vibrations.

Project Introduction (PDF)

Lab: Active Damping of Tall Building Vibrations (PDF 1) (PDF 2)

Tower Data (ZIP) (The ZIP file contains: 13 .m files.)

Assignments

ASSIGNMENTS

SOLUTIONS

Problem set 1 (PDF)

(PDF)

Problem set 2 (PDF)

(PDF)

Problem set 3 (PDF)

(PDF)

Problem set 4 (PDF)

(PDF)

Problem set 5 (PDF)

(PDF)

Problem set 6 (PDF)

(PDF)

Problem set 7 (PDF)

(PDF)

Problem set 8 (PDF)

(PDF)

Problem set 9 (PDF)

(PDF)

Problem set 10 (PDF)

(PDF)

Exams

This page contains the two quizzes, together with their solutions, for the semester.

Quiz 1 (PDF)

Quiz 2 (PDF)