Systems, Modeling, and Control II
Lecture Notes
Lecture 2 refers to the following MATLABĀ® files for solving ODEs: (ZIP) (The ZIP file contains: shaft_w_coulomb_viscous.m, shaftcv_kernel.m, and shaftcv_solve.m files.)
SES # |
TOPICS |
NOTES |
1 |
Introduction; mechanical elements |
(PDF) |
2 |
Solving ODEs; cruise control |
(PDF) |
3 |
Laplace transforms; transfer functions; translational and rotational mechanical transfer functions |
(PDF) |
4 |
Electrical and electro-mechanical system transfer functions |
(PDF) |
5 |
DC motor transfer function |
(PDF) |
6 |
Poles and zeros; 1st order systems |
(PDF) |
7 |
2nd order systems |
(PDF) |
8 |
2nd order systems (cont.) |
(PDF) |
9 |
More than 2 poles; zeros; nonlinearities and linearization |
(PDF) |
10 |
Examples of modeling & transfer functions |
(PDF) |
11 |
Block diagrams; feedback |
(PDF) |
12 |
Analysis of feedback systems |
(PDF) |
13 |
Quiz 1 |
|
14 |
Stability; Routh-Hurwitz criterion |
(PDF) |
15 |
Stability analysis |
Please see the following selections from MathWorks, Inc. "Control System Toolbox Getting Started Guide." (PDF - 1.8 MB) Chapter 1, all |
16 |
Steady state error analysis |
(PDF) |
17 |
Root locus introduction |
(PDF) |
18 |
Root locus example |
(PDF) |
19 |
Design of transient response using root locus |
(PDF) |
20 |
Positive feedback |
(PDF) |
21 |
Examples of design via root locus |
(PDF) |
22 |
Steady-state error compensation |
(PDF) |
23 |
Transient response compensation; transient and steady-state error compensation |
(PDF) |
24 |
Compensation examples |
(PDF) |
25 |
Feedback compensation and its physical realization |
(PDF) |
26 |
Feedback design examples |
(PDF) |
27 |
Quiz 2 |
|
28 |
Frequency response; bode plots |
(PDF) |
29 |
Bode plot examples |
(PDF) |
30 |
Gain margin and phase margin |
(PDF) |
31 |
Design using the frequency response; lead, lag, lead-lag compensators |
(PDF) |
32 |
The state-space representation |
(PDF) |
33 |
Solving the state equations in the time and space domains |
(PDF) |
34 |
State equation examples |
|
35 |
Stability and steady-state error in state space; controllability and observability |
|
36 |
Optimal control; the minimum time problem |
|
37 |
Review: modeling and transfer functions |
(PDF) |
38 |
Review: root locus, feedback design |
(PDF) |
39 |
Review: frequency domain and design |
(PDF) |
Labs
A brief description of the 2.004 lab facilities and rules is provided for reference: (PDF)
The first six labs deal with a physical plant consisting of a rotational flywheel and motor, detailed in this handout: (PDF) (Courtesy Prof. Emanuel Sachs. Used with permission.)
The motor specification sheet may be found here (PDF)
Lab 1: Coulomb and Viscous Friction (PDF)
Lab 2: Characterization of Lab System Components (PDF)
Lab 3: Construction of a Proportional Velocity Controller (PDF)
Lab 4: Closed-loop Performance of a Proportional Velocity Controller (PDF)
Lab 5: Elimination of Steady-state Error Using Integral Control Action (PDF)
Lab 6: Closed-loop Position Control, and the Effect of Derivative Control Action (PDF)
The final set of lab projects involves the design of an active damping system for a skyscraper, including a set of MATLABĀ® files for simulating the tower and its vibrations.
Project Introduction (PDF)
Lab: Active Damping of Tall Building Vibrations (PDF 1) (PDF 2)
Tower Data (ZIP) (The ZIP file contains: 13 .m files.)
Assignments
ASSIGNMENTS |
SOLUTIONS |
Problem set 1 (PDF) |
(PDF) |
Problem set 2 (PDF) |
(PDF) |
Problem set 3 (PDF) |
(PDF) |
Problem set 4 (PDF) |
(PDF) |
Problem set 5 (PDF) |
(PDF) |
Problem set 6 (PDF) |
(PDF) |
Problem set 7 (PDF) |
(PDF) |
Problem set 8 (PDF) |
(PDF) |
Problem set 9 (PDF) |
(PDF) |
Problem set 10 (PDF) |
(PDF) |
Exams
This page contains the two quizzes, together with their solutions, for the semester.
Quiz 1 (PDF)
Quiz 2 (PDF)