Mathematics for Computer Scien

Readings

The course notes below form the "textbook" for the course. Each week, students are required to read the relevant notes, answer questions about these notes assigned on an Online Tutor, and email to the instructor comments on a passage from the reading that was difficult, surprising, or should be more thoroughly explained. Prof. Albert Meyer attempts to adapt lectures in response to student email on the reading.

Week 1 - Proofs (PDF)

Week 2 - Predicates and Sets (PDF)

Week 3 - Induction (PDF)

Week 4 - Binary Relations (PDF)

Week 5 - Graphs (PDF)

Week 6 - Introduction to Number Theory (PDF)

Week 7 - State Machines: Invariants and Termination (PDF); Fallacies with Infinity (PDF)

Week 8 - Sums, Products and Asymptotics (PDF)

Week 9 - Counting I (PDF)

Week 10 - Counting II (PDF)

Week 11 - Generating Functions (PDF)

Week 12 - Introduction to Probability (PDF)

Week 13 - Random Variables, Distributions and Expectation (PDF)

Week 14 - Missed Expectations? (PDF)

Lecture Notes

Powerpoint and LaTeX source files and LaTeX macros are available to instructors by request: email Prof. Albert Meyer at meyer at csail dot mit dot edu.

SES #

TOPICS

SLIDES

IN-CLASS PROBLEMS

IN-CLASS PROBLEM SOLUTIONS

Week 1

1

Good and Bad Proofs
Course Information

(PDF)

(PDF)

(PDF)

2

Propositions and Proofs

(PDF)

(PDF)

(PDF)

Week 2

3

Proofs by Contradiction and Cases

(PDF)

(PDF)

(PDF)

4

Predicate Logic

(PDF)

(PDF)

(PDF)

5

Sets and Functions

(PDF)

(PDF)

(PDF)

Week 3

6

Induction I

(PDF)

(PDF)

(PDF)

7

Induction II

(PDF)

(PDF)

(PDF)

Week 4

8

Relations I

(PDF)

(PDF)

(PDF)

9

Relations II

(PDF)

(PDF)

(PDF)

10

Graph Theory I

(PDF)

(PDF)

(PDF)

Week 5

11

Graph Theory II

(PDF)

(PDF)

(PDF)

12

Graph Theory III

(PDF)

(PDF)

(PDF)

13

Graph Theory IV

(PDF 1)
(PDF 2)

(PDF)

(PDF)

Week 6

14

Number Theory I

(PDF)

(PDF)

(PDF)

15

Number Theory II

 

(PDF)

(PDF)

Week 7

16

Quiz 1 and Solution

 

 

 

17

Number Theory III

(PDF)

(PDF)

(PDF)

18

State Machines I: Invariants
Fallacies with Infinity

(PDF)

(PDF)

(PDF)

Week 8

19

State Machines II: Derived Variables, Stable Marriage Problem

(PDF - 1.9 MB)

(PDF)

(PDF)

20

Sums and Series I

(PDF)

(PDF)

(PDF)

21

Sums and Series II
Mid-course Survey

(PDF)

(PDF)

(PDF)

Week 9

22

Asymptotics

(PDF)

(PDF)

(PDF)

23

Counting I

 

(PDF)

(PDF)

24

Counting II

 

(PDF)

(PDF)

Week 10

25

Counting III (with Magic Trick Solution)

 

(PDF)

(PDF)

26

Counting IV

 

(PDF)

(PDF)

Week 11

27

Quiz 2 and Solution

 

 

 

28

Generating Functions I

 

(PDF)

(PDF)

29

Generating Functions II

 

(PDF)

(PDF)

Week 12

30

Introduction to Probability

 

(PDF)

(PDF)

31

Conditional Probability and Independence

 

(PDF)

(PDF)

Week 13

32

Random Variables

 

(PDF)

(PDF)

33

Distribution and Density, Binomial Distribution

 

(PDF)

(PDF)

34

Expectation

 

(PDF)

(PDF)

Week 14

35

Linearity of Expectation

 

(PDF)

(PDF)

36

Variance

 

(PDF)

(PDF)

37

Sampling and Confidence

 

(PDF)

(PDF)

Week 15

38

Law of Large Numbers

(PDF)

(PDF)

(PDF)

39

Random Walks

(PDF)

(PDF)

(PDF)

Assignments

The assignments are given out in the sessions noted in the table.

SES #

TOPICS

ASSIGNMENTS

SOLUTIONS

2

Propositions and Proofs

Problem Set 1 (PDF)

(PDF)

6

Induction I

Problem Set 2 (PDF)

(PDF)

8

Relations I

Problem Set 3 (PDF)

(PDF)

11

Graph Theory II

Problem Set 4 (PDF)

(PDF)

14

Number Theory I

Problem Set 5 (PDF)

(PDF)

18

State Machines I: Invariants
Fallacies with Infinity

Problem Set 6 (PDF)

(PDF)

23

Counting I

Problem Set 7 (PDF)

(PDF)

29

Generating Functions I

Problem Set 8 (PDF)

(PDF)

31

Introduction to Probability

Problem Set 9 (PDF)

(PDF)

35

Expectation

Problem Set 10 (PDF)

(PDF)

Exams

This section provides the 2-hour quizzes and 3-hour final exam for the course. For more practice exams, see theSpring 2005 edition of this course on OpenCourseWare.

EXAMS

SOLUTIONS

Practice Quiz 1 (Spring 2002) (PDF)

(PDF)

Quiz 1 (PDF)

(PDF)

Quiz 2 (PDF)

(PDF)

Final Exam (PDF)

(PDF)