Computational Biology: Genomes, Networks, Evolution

Lecture Notes

This section contains scribe notes and slides from selected lectures. Students were required to write up scribe notes; see the syllabus for more details.

All scribe notes are courtesy of 6.047 students and are used with permission.

SES #

TOPICS

SCRIBE NOTES

SLIDES

L1

Introduction: biology, algorithms, machine learning

(PDF)

(PDF - 1.7MB)

L2

Global / local alignment, dynamic programming

(PDF)

(PDF)

L3

String search, BLAST, database search

(PDF)

(PDF - 1.4MB)

L4

Clustering basics, gene expression, sequence clustering

 

(PDF)

L5

Classification, feature selection, SVM

(PDF)

(PDF)

L6

HMMs 1: evaluation, parsing

(PDF)

(PDF)

L7

HMMs 2: posterior decoding, learning

(PDF)

(PDF)

L8

Generalized HMMs and gene prediction

(PDF)

(PDF - 1.5MB)

L9

Regulatory motifs, Gibbs sampling, EM

 

(PDF)

L10

Gene evolution: phylogenetic algorithms, NJ, ML, parsimony

(PDF)

(PDF)

L11

Molecular evolution, coalescence, selection, Ka/Ks

Guest lecturer: Daniel Neafsey, Broad Institute
 

(PDF)

(PDF) (Courtesy of Daniel Neufsey. Used with permission.)

L12

Population genomics: fundamentals

Guest lecturer: Pardis Sabeti, Harvard Systems Biology
 

(PDF)

 

L13

Population genomics: association studies

Guest lecturer: Pardis Sabeti, Harvard Systems Biology
 

(PDF)

 

L14

Midterm

 

 

L15

Genome assembly, Euler graphs

(PDF)

 

L16

Comparative genomics 1: biological signal discovery, evolutionary signatures

(PDF)

 

L17

Comparative genomics 2: phylogenetics, gene and genome duplication

 

 

L18

Conditional random fields, gene finding, feature finding

(PDF)

(PDF)

L19

Regulatory networks, Bayesian networks

 

(PDF)

L20

Inferring biological networks, graph isomorphism, network motifs

(PDF)

 

L21

Metabolic modeling 1: dynamic systems modeling

(PDF)

(PDF - 1.1MB)

L22

Metabolic modeling 2: flux balance analysis and metabolic control analysis

(PDF)

 

L23

Systems biology

Guest lecturer: Uri Alon, Weizmann Institute of Science
 

 

 

L24

Module networks

Guest lecturer: Aviv Regev, Broad Institute
 

(PDF)

 

L25

Synthetic biology

Guest lecturer: Tom Knight, MIT Computer Science and Artificial Intelligence Laboratory
 

(PDF)

 

L26

Final presentations

 

 

Recitations

Weekly recitations are held during the first eight weeks of the course. Notes are available for selected recitations below.

These notes are courtesy of the course TAs, Pouya Kheradpour and Matt Rasmussen, and are used with permission.

SES #

TOPICS

R1

Probability, statistics, biology (PDF)

R2

Affine gaps alignment, hashing with combs

R3

Microarrays (PDF)

R4

Posterior decoding review, Baum-Welch learning

R5

Entropy, information, background models (PDF)

R6

Gene trees, species trees, reconciliation (PDF)

R7

Population genomics

R8

Brainstorming for final projects

Assignments

Problem Sets

PROBLEM SETS

SUPPORTING FILES

Problem set 1 (PDF)

(ZIP) (The ZIP file contains 7 .fa files and 4 .py files.)

Problem set 2 (PDF)

(ZIP) (The ZIP file contains 5 .txt files and 1 .py file.)

Problem set 3 (PDF)

(ZIP) (The ZIP file contains 4 .py files and 8 files with no extensions.)

Problem set 4 (PDF)

(ZIP) (The ZIP file contains 3 .txt files and 1 .gff file.)

Final Project

PROJECT FILES

Milestone 1 (PDF)

Milestone 2 (PDF)

Guidelines for report and presentations (PDF)

Exams

The Fall 2007 midterm was provided as a practice exam. This course had no final exam.

 

EXAMS

Fall 2007 midterm (PDF)

Fall 2008 midterm (PDF)