Probabilistic Systems Analysis and Applied Probability

Lecture Notes

SES #

TOPICS

L1

Probability Models and Axioms (PDF)

L2

Conditioning and Bayes' Rule (PDF)

L3

Independence (PDF)

L4

Counting Sections (PDF)

L5

Discrete Random Variables; Probability Mass Functions; Expectations (PDF)

L6

Conditional Expectation; Examples (PDF)

L7

Multiple Discrete Random Variables (PDF)

L8

Continuous Random Variables - I (PDF)

L9

Continuous Random Variables - II (PDF)

L10

Continuous Random Variables and Derived Distributions (PDF)

L11

More on Continuous Random Variables, Derived Distributions, Convolution (PDF)

L12

Transforms (PDF)

L13

Iterated Expectations (PDF)

L13A

Sum of a Random Number of Random Variables (PDF)

L14

Prediction; Covariance and Correlation (PDF)

L15

Weak Law of Large Numbers (PDF)

L16

Bernoulli Process (PDF)

L17

Poisson Process (PDF)

L18

Poisson Process Examples (PDF)

L19

Markov Chains - I (PDF)

L20

Markov Chains - II (PDF)

L21

Markov Chains - III (PDF)

L22

Central Limit Theorem (PDF)

L23

Central Limit Theorem (cont.), Strong Law of Large Numbers (PDF)

Recitations

This section contains problems that are solved during recitation and tutorial sessions in addition to weekly notes that give an overview of topics to be covered. During recitations, the instructor elaborates on theories, solves new examples, and answers students' questions. Recitations are held separately for undergraduates and graduates. During tutorials, students discuss and solve new examples with a little help from the instructor. Tutorials are active sessions to help students develop confidence in thinking about probabilistic situations in real time. Tutorials are not mandatory but highly recommended for students enrolled in the course.

Weekly Notes

WEEK #

TOPICS

1

Probability Models and Axioms (PDF)

2

Conditional Probability and Baye's Rule (PDF)

3

Discrete Random Variables, Probability Mass Functions, and Expectations (PDF)

4

Conditional Expectation and Multiple Discrete RVs (PDF)

5

Continuous RVs (CDF, Normal RV, Conditioning, Multiple RV) (PDF)

6

Continuous RVs (Conditioning, Multiple RVs, Derived Distributions) (PDF)

7

Derived Distributions, Convolution, and Transforms (PDF)

8

Iterated Expectations, Sum of a Random Number of RVs (PDF)

9

Prediction, Covariance and Correlation, Weak Law of Large Numbers (PDF)

10

Weekly Notes

11

Bernoulli Process, Poisson Process (PDF)

12

Weekly Notes

13

Markov Chains (Steady State Behavior and Absorption Probabilities) (PDF)

14

Central Limit Theorem (PDF)

 

Recitations

SES #

RECITATIONS

SOLUTIONS

R1

Set Notation, Terms and Operators (include De Morgan's), Sample Spaces, Events, Probability Axioms and Probability Laws (PDF)

(PDF)

R2

Conditional Probability, Multiplication Rule, Total Probability Theorem, Baye's Rule (PDF)

(PDF)

R3

Introduction to Independence, Conditional Independence (PDF)

(PDF)

R4

Counting; Discrete Random Variables, PMFs, Expectations (PDF)

(PDF)

R5

Conditional Expectation, Examples (PDF)

(PDF)

R6

Multiple Discrete Random Variables, PMF (PDF)

(PDF)

R7

Continuous Random Variables, PMF, CDF (PDF)

(PDF)

R8

Marginal, Conditional Densities/Expected Values/Variances (PDF)

(PDF)

R9

Derivation of the PMF/CDF from CDF, Derivation of Distributions from Convolutions (Discrete and Continuous) (PDF)

(PDF)

R10

Transforms, Properties and Uses (PDF)

(PDF)

R11

Iterated Expectations, Random Sum of Random Variables (PDF)

(PDF)

R12

Expected Value and Variance (PDF)

(PDF)

R13

Recitation 13

(PDF)

R14

Prediction; Covariance and Correlation (PDF)

(PDF)

R15

Weak Law of Large Numbers (PDF)

(PDF)

R16

Bernoulli Process, Split Bernoulli Process (PDF)

(PDF)

R17

Poisson Process, Concatenation of Disconnected Intervals (PDF)

(PDF)

R18

Competing Exponentials, Poisson Arrivals (PDF)

(PDF)

R19

Markov Chain, Recurrent State (PDF)

(PDF)

R20

Steady State Probabilities, Formulating a Markov Chain Model (PDF)

(PDF)

R21

Conditional Probabilities for a Birth-death Process (PDF)

(PDF)

R22

Central Limit Theorem (PDF)

(PDF)

R23

Last Recitation, Review Material Covered after Quiz 2 (Chapters 5-7)

 

 

Tutorials

SES #

TUTORIALS

SOLUTIONS

T1

Baye's Theorem, Independence and Pairwise Independence (PDF)

(PDF)

T2

Probability, PMF, Means, Variances, and Independence (PDF)

(PDF)

T3

PMF, Conditioning and Independence (PDF)

(PDF)

T4

Expectation and Variance, CDF Function, Expectation Theorem, Baye's Theorem (PDF)

(PDF)

T5

Random Variables, Density Functions (PDF)

(PDF)

T6

Transforms, Simple Continuous Convolution Problem (PDF)

(PDF)

T7

Iterated Expectation, Covariance/Independence with Gaussians, Random Sum of Random Variables (PDF)

(PDF)

T8

Correlation, Estimation, Convergence in Probability (PDF)

(PDF)

T9

Signal-to-Noise Ratio, Chebyshev Inequality (PDF)

(PDF)

T10

Two Instructive Drill Problems (One Bernoulli, One Poisson) (PDF)

(PDF)

T11

Poisson Process, Conditional Expectation, Markov Chain (PDF)

(PDF)

T12

Markov Chains: Steady State Behavior and Absorption Probabilities (PDF)

(PDF)

Assignments

In addition to course assignments and solutions, the textbook errata and homework policy is provided below. Undergraduates enrolled in 6.041 were expected to do all problems except the problems designated with a 'G', which were required of graduate students enrolled in 6.431 and optional for ambitious undergraduates.

Problem Set Policy (PDF)

Problem Errata (PDF)

ASSIGNMENTS

SOLUTIONS

Problem Set 1 (PDF)

(PDF)

Problem Set 2 (PDF)

(PDF)

Problem Set 3 (PDF)

(PDF)

Problem Set 4 (PDF)

(PDF)

Problem Set 5 (PDF)

(PDF)

Problem Set 6 (PDF)

(PDF)

Problem Set 7 (PDF)

(PDF)

Problem Set 8 (PDF)

(PDF)

Problem Set 9 (PDF)

(PDF)

Problem Set 10 (PDF)

(PDF)

Problem Set 11 (PDF)

(PDF)

Problem Set 12 (PDF)

(PDF)

 

Exams

EXAMS

SOLUTIONS

Quiz 1 (PDF)

(PDF)

Quiz 2 (PDF)

(PDF)

Final Exam (PDF)

(PDF)